首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   676篇
  免费   270篇
  国内免费   34篇
化学   49篇
晶体学   8篇
力学   7篇
物理学   916篇
  2023年   47篇
  2022年   32篇
  2021年   23篇
  2020年   21篇
  2019年   52篇
  2018年   50篇
  2017年   30篇
  2016年   26篇
  2015年   24篇
  2014年   61篇
  2013年   28篇
  2012年   64篇
  2011年   46篇
  2010年   31篇
  2009年   49篇
  2008年   50篇
  2007年   35篇
  2006年   27篇
  2005年   23篇
  2004年   19篇
  2003年   23篇
  2002年   25篇
  2001年   21篇
  2000年   38篇
  1999年   17篇
  1998年   31篇
  1997年   10篇
  1996年   13篇
  1995年   8篇
  1994年   7篇
  1993年   4篇
  1992年   3篇
  1990年   4篇
  1989年   4篇
  1988年   5篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1982年   6篇
  1981年   5篇
  1980年   1篇
  1977年   1篇
排序方式: 共有980条查询结果,搜索用时 15 毫秒
1.
喷泉钟量子化轴磁场的空间均匀性和时间稳定性是制约原子钟输出频率稳定度和不确定度的重要因素.从外磁场屏蔽、磁场线圈设计、线圈电流源稳定性等方面考虑,构建并优化设计了一套可搬运铷喷泉原子钟量子化轴磁场系统.为了消除环境磁场对量子化轴磁场的影响,使用5层坡莫合金磁屏蔽进行外磁场的屏蔽;利用4组对称的补偿线圈,通过计算给予合适的电流,获得喷泉钟内部30 cm原子自由飞行尺度内磁场波动小于1 nT;通过改善C场供电电流方式,从而优化量子化轴磁场的时间稳定性,磁场随时间的波动小于0.1 nT.优化后喷泉钟长期频率稳定度达2.9×10-16,磁场空间分布不均匀性带来的二阶塞曼频移不确定度为3.4×10-19,由磁场随时间波动带来的二阶塞曼频移的不确定度为5.1×10-17.  相似文献   
2.
3.
梁琼心  黄金龙  王鲲鹏  薛莉 《光学学报》2021,41(19):174-183
针对大口径望远镜光学系统内部空间限制的特点,为了实现失调量校正,提出了一种基于本征系数的失调量解算方法.该方法首先利用波前曲率传感器的原理,通过交替测量前后离焦面的方式采集光斑图.然后,利用无需分区探测的本征函数法进行波前重构,利用本征系数来表征系统波像差,并依据失调量建立灵敏度矩阵模型.最后,根据失调状态与理想状态的本征系数即可求解出失调量.与其他技术途径相比,该方法具有无需添加光学元件、无需分区探测、运算简单的特点.主镜直径为1.8m的望远镜实验结果表明,当次镜偏心距离范围为--0.9~0.9 mm、倾斜角范围为--0.2°~0.2°时,利用本征系数灵敏度矩阵法得到的计算值的误差均小于10%,对大口径望远镜中的应用具有一定的意义.  相似文献   
4.
激光技术的不断发展对激光薄膜的光学性能、激光损伤阈值、机械性能等提出了越来越高的要求。具有低吸收损耗的激光薄膜在强激光、精密测量等领域有十分重要的应用。从电子束蒸发和离子束溅射沉积工艺、薄膜材料两个方面,对激光薄膜在吸收损耗控制方面的研究进展进行综述,详细介绍了制备过程中多个环节对薄膜吸收损耗的调控方法,以及单一材料和混合物薄膜的吸收机理、吸收调控方法。  相似文献   
5.
通过改装多旋翼无人机(UAV)和搭载各类载荷以及联合地基观测设备对大柴旦地区大气、环境以及气溶胶参数进行测量。利用获得的数据资料,对该地区近地层气溶胶粒子数浓度(即单位体积空气中气溶胶粒子的数目)、消光系数以及气象要素等特征进行了分析。结果表明,在大柴旦地区,近地层气溶胶粒子数浓度日变化显著,呈现双峰形态,气溶胶粒子数浓度的变化范围为75~220 cm-3,消光系数的变化范围为0.004~0.038 km-1;当风速小于6 m/s时,气溶胶粒子数浓度与风速呈负相关关系;当风速大于6 m/s时,二者呈正相关关系;相对湿度对气溶胶粒子的影响较小,这可能是由于该地区以沙尘型气溶胶为主,吸湿性较弱。本研究基于多旋翼无人机探测平台,可以有效地获得近地层精细化大气、环境结构,有助于研究人员了解该地区气溶胶的结构、变化特征以及建立气溶胶模式,同时也为气溶胶及大气环境参数探测方法提供了技术支撑及思路拓展。  相似文献   
6.
在高功率激光运转条件下,掺杂稀土离子的量子亏损和玻璃材料的本征吸收均会造成光纤放大器中增益光纤温度的整体上升与梯度分布。在热平衡状态下,光纤材料的热光效应将会诱导光纤横向折射率的再分布,引发高功率激光运转条件下增益光纤模式特性的改变。为此,利用多物理场有限元建模的数值计算方法对高功率激光运转条件下大模场掺镱石英光纤的热致模式特性展开系统研究,分析总结大模场增益光纤的模式特性在不同激光运转功率、增益光纤设计参数(纤芯直径、数值孔径、热光系数)和光纤弯曲使用条件下的变化规律。结果表明,随着激光运转功率的增加,纤芯和包层之间的温差会变大,从而导致光纤的归一化参数V值增大,最终使模式的传输损耗系数减小,模式在纤芯区域的功率因子增大。  相似文献   
7.
紫外可见偏振成像光谱仪中沃拉斯顿棱镜的色散效应会导致探测器同一空间通道的中心坐标发生偏移,影响目标信号探测精度。根据偏振解调算法,利用沃拉斯顿棱镜出射的两正交分量调制光谱(S光和P光)实现偏振信息解调时,还需要完成光谱匹配。针对这一问题,提出了一种光谱定标与匹配方法。首先利用平行光源标定了仪器视场角与空间维像元的对应关系,提取出各空间通道对应的像元坐标集合并确定了视场定标方程;在同一空间通道内,通过低压汞灯标准光源对波长与像元的对应关系进行标定,得出光谱定标方程;利用视场定标和光谱定标结果完成正交分量光谱的匹配;最后利用太阳光谱中Fraunhofer线的特征波长对定标结果进行了检验。结果表明:紫外可见偏振成像光谱仪正交分量的光谱吸收峰位具有较好的一致性,定标值和标准值的偏差在0.1 nm以内,这验证了定标结果的准确性。  相似文献   
8.
本文基于实测的热力湍流探空数据,使用WR95方法识别低云的垂直结构,对比分析了低云与晴空天气下大气折射率结构参数Cn~2、气象条件和大气稳定度的平均统计结果.结果表明,低层薄云对Cn~2起伏变化的影响微乎甚微,仅仅表现出轻微增大的趋势,云底Cn~2相对于晴空天气平均增大1.6倍,云顶之上最大程度增大2.5倍.低层中厚云在云顶处Cn~2相对于晴空天气增大了3.80—6.61倍,且云顶区域Cn~2增大的幅度大于云底区域.云底区域大气湍流特性受到地面热力驱动与低云冷却的联合作用,沉降气流与地面向上气流发生了耦合,增强了风切变,Cn~2在这一高度附近也出现了增强.综合对比晴空和有云天气Cn~2大小可知,云对Cn~2的增强效应大致在10–16量级.一方面,风切变在云顶处或者云顶之上达到最大值;另一方面,因为云顶短波辐射增温和长波辐射冷却的共同作用,云顶之上会形成不同厚度的逆温层,致使云顶处位温变化率急剧增大,Brunt-V...  相似文献   
9.
在EAST装置上安装了X模极化W波段多道相关反射仪,用于测量等离子体芯部密度涨落。该诊断利用低损耗(<3dB)多工器将4个不同频率(79.2GHz,85.2GHz,91.8GHz和96GHz)的微波耦合在一起,通过同一个天线发射。反射波由两个极向分离(~5cm)的天线接收,通过下变频技术实现外差测量。通过对两个极向天线接收的信号进行相关分析,获得芯部湍流垂直速度。对2018年低约束模式(L模)放电进行分析发现,在电子回旋共振加热(ECRH)等离子体中,芯部湍流垂直速度在电子逆磁漂移方向。而在注入同向中性束(co-NBI)后,芯部湍流垂直速度变为离子逆磁漂移方向。  相似文献   
10.
凌六一  谢品华  林攀攀  黄友锐  秦敏  段俊  胡仁志  吴丰成 《物理学报》2015,64(13):130705-130705
针对传统非相干宽带腔增强吸收光谱浓度反演方法的定量结果易受镜片反射率标定误差的影响问题, 提出了一种基于测量大气O2-O2吸收的浓度反演方法. 该方法是将非相干宽带腔增强吸收光谱技术的光学增强腔等效成吸收光程不随波长变化的多次反射池, 首先根据测得的宽带腔增强大气吸收谱和参考谱计算出光学厚度, 并应用差分光学吸收光谱算法拟合修正后的气体吸收截面到光学厚度, 反演得到大气中O2-O2以及被测气体的柱浓度, 然后根据O2-O2在大气中的含量已知且相对稳定这一特性, 确定出等效多次反射池的吸收光程, 最后从被测气体的柱浓度中扣除吸收光程信息得到被测气体的浓度值. 以监测大气中NO2实验为例, 应用该方法在454-487 nm波段反演得到了大气NO2的浓度(1-30 ppbv范围内), 并将反演结果与传统浓度反演方法的结果进行了对比, 发现两者的不一致性在7%以内. 实验结果表明, 非相干宽带腔增强吸收光谱技术可以利用大气O2-O2的吸收来定量其他被测气体的浓度, 而且定量结果对镜片反射率的标定误差不敏感.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号