首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
  国内免费   1篇
化学   2篇
物理学   1篇
  2023年   1篇
  2018年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
In order to explore the in uence of modification sites of functional groups on landfill gas (CO2/CH4) separation performance of metal-organic frameworks (MOFs), six types of organic linkers and three types of functional groups (i.e. -F, -NH2, -CH3) were used to construct 36 MOFs of pcu topology based on copper paddlewheel. Grand canonical Monte Carlo simulations were performed in this work to evaluate the separation performance of MOFs at low (vacuum swing adsorption) and high (pressure swing adsorption) pressures, respectively. Simulation results demonstrated that CO2 working capacity of the unfunctionalized MOFs generally exhibits pore-size dependence at 1 bar, which increases with the decrease in pore sizes. It was also found that -NH2 functionalized MOFs exhibit the highest CO2 uptake due to the enhanced Coulombic interactions between the polar -NH2 groups and the quadrupole moment of CO2 molecules, which is followed by -CH3 and -F functionalized ones. Moreover, positioning the functional groups -NH2 and -CH3 at sites far from the metal node (site b) exhibits more significant enhancement on CO2/CH4 separation performance compared to that adjacent to the metal node (site a).  相似文献   
2.
In order to explore the in uence of modification sites of functional groups on landfill gas (CO2/CH4) separation performance of metal-organic frameworks (MOFs), six types of organic linkers and three types of functional groups (i.e. -F, -NH2, -CH3) were used to construct 36 MOFs of pcu topology based on copper paddlewheel. Grand canonical Monte Carlo simulations were performed in this work to evaluate the separation performance of MOFs at low (vacuum swing adsorption) and high (pressure swing adsorption) pressures, respectively. Simulation results demonstrated that CO2 working capacity of the unfunctionalized MOFs generally exhibits pore-size dependence at 1 bar, which increases with the decrease in pore sizes. It was also found that -NH2 functionalized MOFs exhibit the highest CO2 uptake due to the enhanced Coulombic interactions between the polar -NH2 groups and the quadrupole moment of CO2 molecules, which is followed by -CH3 and -F functionalized ones. Moreover, positioning the functional groups -NH2 and -CH3 at sites far from the metal node (site b) exhibits more significant enhancement on CO2/CH4 separation performance compared to that adjacent to the metal node (site a).  相似文献   
3.
《中国化学快报》2023,34(8):108102
The threat to public health from bacterial infections has led to an urgent need to develop simpler, faster and more reliable bacterial detection methods. In this work, we developed a universal dual-recognition based sandwich fluorescence resonance energy transfer (FRET) sensor by using specific aptamer-modified quantum dots (Aptamer-QDs) as energy donor and lectin concanavalin A (Con A) modified gold nanoparticles (Con A-AuNPs) as energy acceptor to achieve rapid and sensitive detection of Escherichia coli (E. coli) within 0.5 h. In the presence of the target E. coli, the energy donor of Aptamer-QDs and acceptor of Con A-AuNPs were close to each other, causing changes of FRET signals. Based on the constructed FRET sensor, a linear detection range of from 102 cfu/mL to 2 × 108 cfu/mL with the detection limit of 45 cfu/mL for E. coli was achieved. Furthermore, the FRET sensor was applied to detect E. coli in the milk and orange juice with the detection limit of 300 cfu/mL and 200 cfu/mL, respectively and recovery rate from 83.1% to 112.5%. The strategy holds great promise in pathogenic bacteria detection due to its rapid and sensitivity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号