首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   40篇
  国内免费   13篇
化学   68篇
晶体学   3篇
力学   12篇
数学   8篇
物理学   74篇
  2023年   3篇
  2022年   2篇
  2021年   6篇
  2020年   9篇
  2019年   8篇
  2018年   7篇
  2017年   11篇
  2016年   5篇
  2015年   10篇
  2014年   2篇
  2013年   6篇
  2012年   12篇
  2011年   8篇
  2010年   14篇
  2009年   9篇
  2008年   16篇
  2007年   11篇
  2006年   12篇
  2005年   1篇
  2004年   2篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
排序方式: 共有165条查询结果,搜索用时 15 毫秒
1.
In order to act as extrinsic pseudocapacitor materials, nanoscale vanadium oxides are required to simultaneously exhibit a capacitance-based high power density and an intercalation-based high energy density. We have fabricated a three-dimensionally ordered macroporous (3DOM) structure with a wall thickness of 14 nm that fulfills the above requirements. The 3DOM vanadium oxide film exhibits high rate performance with 355 F g 1 at 0.5 A g 1 and 125 F g 1 at 15 A g 1. The enhanced pesudocapacitive effect and Li-ion diffusion coefficient based on the 3DOM nanostructure, also contributes to the high rate capability of vanadia, which can be confirmed by cyclic voltammetry and chronoamperometry.  相似文献   
2.
节能减排已成为当今社会发展的主题,对节约能源、提高太阳能的高效综合利用的新型窗用透明隔热材料的理论设计和研究尤其重要.本文采用基于密度泛函理论的计算方法,研究了六方相三氧化钨Ti掺杂前、后的晶格参数、电子能带结构、形成能和光学性质.研究结果表明,Ti掺杂后晶格体积增大,系统能量降为负值,体系具有更好的稳定性;掺杂后电子能带结构发生很大的变化,但材料仍保持n型电导率;随之,其光学性质也发生改变,掺杂前h-WO3无近红外吸收性能,掺杂后的Ti0.33WO3具有很强的近红外吸收性能.在此基础上研究了Ti掺杂h-WO3前、后的太阳辐射屏蔽性能,掺杂前无太阳辐射屏蔽性能;掺杂后的Ti0.33WO3薄膜具有可见光高透明、近红外屏蔽的性能.计算结果为Ti掺杂h-WO3在窗用透明隔热材料方面的研究提供了理论依据.  相似文献   
3.
Glucose detection plays very important roles in diagnostics and management of diabetes. The search for novel catalytic materials with appropriate architectures is the key step in the fabrication of highly sensitive glucose sensors. In this work, α-Ni(OH)2 roselike structures (Ni(OH)2-RS) assembled from nanosheet building blocks were successfully synthesized by a hydrothermal method through the hydrolysis of nickel chloride in the mixed solvents of water and ethanol with the assistance of polyethylene glycol (PEG). The structure and morphology of the roselike α-Ni(OH)2 were characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and N2 adsorption–desorption isotherm measurement. TEM and FE-SEM images showed that the synthesized Ni(OH)2 was roselike and the size of the leaf-shaped nanosheet was about 5 nm in thickness, which leads to larger active surface areas and faster electron transfer for the detection of glucose. Compared with the bare GCE and bulk Ni(OH)2/GCE, the Ni(OH)2-RS/GCE had higher catalytic activity toward the oxidation of glucose. Under the optimal conditions, the Ni(OH)2-RS/GCE offers a variety of merits, such as a wide linear response window for glucose concentrations ranging from 0.87 μM to 10.53 mM, short response time (3 s), a lower detection limit of 0.08 μM (S/N = 3), as well as long term stability and repeatability.  相似文献   
4.
The effect of tetramethylenedicarboxylic dibenzoylhydrazide (designated here as TMC) on the nonisothermal and isothermal crystallization behavior of PLA was investigated by differential scanning calorimetry (DSC), polarized optical microscopy (POM) and wide angle X-ray diffraction (WAXD). TMC shows excellent nucleating effect on PLA. With the addition of 0.05 wt% TMC, the crystallization half-time of PLA decreases from 26.06 to 6.13 min at 130 °C. The isothermal crystallization data were further analyzed by the Avrami model. The values of the Avrami exponent of the blends are comparable to that of neat PLA, indicating that the presence of TMC does not change the crystallization mechanism of the matrix. The observation from POM and WAXD measurements showed that the presence of TMC increases significantly the nuclei density of PLA but has no discernible effect on its crystalline structure.  相似文献   
5.
Although esters in general have received much attention over the last decade of combustion research, the combustion of vinyl esters have yet not been studied in detail. Recent studies on ethyl acetate show that vinyl acetate is a major intermediate but its combustion is not well understood. This may be due to the fact that vinyl acetate itself can presumably not be used as a fuel or fuel additive, but both the fundamental understanding of vinyl ester combustion and the improvement of the ethyl ester modeling motivate the present study. Building on the work on ethyl acetate, a first kinetic model for the high- and low-temperature combustion of vinyl acetate is proposed, which includes reactions and intermediates that have not been considered before. These reactions are based on low-level quantum mechanical calculations as well as analogies drawn to mainly ethyl acetate. Seven additional species are considered compared to the ethyl acetate study for which the thermochemical data is derived by ab-initio calculations. The vinyl acetate kinetic model is validated against ignition delay times obtained in a shock tube and a rapid compression machine at pressures of 20 and 40 bar and temperatures ranging from 850 to 1250 K. Overall, a satisfactory agreement between the predictions of the kinetic model and the experimental data was found for all investigated conditions. Rate of production and brute force sensitivity analyses were performed to identify the most relevant reaction pathways, which underline the strong connection between the vinyl acetate and ethyl acetate chemistry.  相似文献   
6.
Chemical modification of graphene oxide has become a popular method for imparting unique properties to extend its application. Here, we show a simple way to synthesize amphiphilic graphene oxide (AGO) by grafting quaternary ammonium salt onto GO sheets. The AGO sheets not only showed high thermal stability and good dispersion in many polar and non-polar solvents in comparison to GO sheets but also the chemical modification maintained the two-dimensional structure. As a result, the AGO sheets improve the interfacial interaction between ethylene-vinyl acetate copolymer (EVA) and linear low-density polyethylene (LLDPE). Because of the large size of AGO, the location of AGO is very dependent on the mixing strategy. The AGO was dispersed in the EVA phase when AGO was mixed first with EVA and then with LLDPE, whereas it was confined in the LLDPE phase when AGO was mixed first with LLDPE and then with EVA. AGO sheets were found at the interface of LLDPE and EVA when AGO, EVA, and LLDPE were mixed together, suggesting that AGO has a high interfacial interaction with both LLDPE and EVA. These high interfacial interactions lead to high tensile strength, Young's modulus, complex viscosity and crystallization temperature in comparison to the EVA/LLDPE blends without AGO sheets.  相似文献   
7.
Recently, special attention has been paid to the development of active wound dressing materials based on biopolymers. Collagen is a natural polymer, which meets the requirements of modern materials for medical applications. However, despite its unique properties, collagen has no antimicrobial activity. In this work thymol was incorporated into collagen films to meet antimicrobial properties of the material. Thymol is a naturally occurring phenolic compound recognized as an antimicrobial agent. Collagen/thymol thin films were obtained through solvent evaporation using collagen solutions containing different amounts of thymol. The structure of the obtained materials was studied using FTIR-ATR spectroscopy. The inhibition ability on the growth of several strains of microorganisms was tested. The standard ISO 22196:2007 was used to define the bactericidal properties of the material. The growth of the following bacteria on the collagen/thymol films was studied: Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis, Enterobacter aerogenes, Candida albicans. The results showed that the growth of Staphylococcus aureus was the most inhibited compared to the other tested strains. Collagen/thymol material is more efficient against pathogens through direct contact compared to the diffusion of thymol from the material. In general, the thymol addition inhibits biofilm formation on the collagen surface.  相似文献   
8.
《中国物理 B》2021,30(7):70701-070701
In the real world, rule makers can only restrict, not completely control the behavior of the governed, while the governed can only choose their behavior patterns under these restrictions. In this paper, we design a new control protocol called free protocol to describe this situation. First, we calculate consensus probabilities based on the information of the interaction networks. Then, sufficient conditions are obtained for all agents converging to a same value with probability one. Finally, numerical simulation results are given to verify the above results.  相似文献   
9.
以正戊烷云雾为研究对象,进行预点火湍流对云雾爆炸参数影响规律的实验研究。首先通过不同气动压力进行喷雾,获得平均特征直径(SMD)分别为 21.21、14.51 和 8.64 μm 的正戊烷云雾,并得到不同气动压力预点火的湍流均方根速度;随后在 20 L 云雾爆炸参数测量系统中实验获得预点火湍流对正戊烷云雾蒸发速率、爆炸超压峰值、压力上升速率和火焰传播延迟时间的影响。结果表明:(1) 对于圆柱形罐体对称式双喷头分散系统,流场环境可近似认定为零平均速率湍流场;在0.4、0.6和0.8 MPa的气动压力喷雾50 ms的分散作用下,在100~250 ms内,湍流均方根速度在1.0~6.2 m/s范围内,平均湍流积分尺度在40~72 mm范围内,湍流最大湍流尺度的雷诺数在8 000~15 000范围内,柯尔莫哥洛夫微尺度在0.03~0.1 mm范围内;(2) 对于较小的液滴群,随湍流强度的增加,液滴群的蒸发速率有更为明显的提升;(3) 对比云雾三种SMD,粒径8.64 μm的超压峰值与最大压力上升速率随湍流强度增长趋势更显著,并发生爆炸强度显著提升现象,即存在“转变区域”(transition range)现象;(4) 对于SMD在8~22 μm范围内,湍流均方根速度处于1.0~4.0 m/s时为火焰传播延迟时间的低增长阶段,湍流均方根速度处于4.0~6.2 m/s时为火焰传播延迟时间的高增长阶段,湍流强度与火焰传播延迟时间在相应的两个湍流强度阶段范围内呈线性增长。  相似文献   
10.
The polypropylene (PP)/polystyrene (PS)/montmorillonite (MMT) blends were prepared by an innovative eccentric rotor extruder based on continuous elongational flow. Addition of MMT nanoparticles was found to reduce the PS droplet size and improve the compatibility of PP/PS. The MMT nanoparticles had clear intercalation and/or exfoliation structures and were located mostly at the interface of PP/PS. It was found that the intercalation and exfoliation of MMT was finished under the synergy of interfacial interaction and tensile deformation so that we called the mechanism as “MMT exfoliation mechanism induced by synergy of interface and tensile deformation”. The rheological analysis showed that incorporation of MMT led to an increase in complex viscosity to an optimum level (5 wt%), after which any further increase in MMT concentration decreased the complex viscosity. Moreover, the degree of crystallinity of blends was controlled by the heterogeneous nucleation effect of MMT and the inhibition effect of PS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号