首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   930篇
  免费   20篇
  国内免费   4篇
化学   471篇
晶体学   4篇
力学   54篇
数学   251篇
物理学   174篇
  2023年   9篇
  2022年   9篇
  2021年   23篇
  2020年   8篇
  2019年   9篇
  2018年   11篇
  2017年   13篇
  2016年   17篇
  2015年   20篇
  2014年   30篇
  2013年   65篇
  2012年   65篇
  2011年   47篇
  2010年   45篇
  2009年   63篇
  2008年   65篇
  2007年   40篇
  2006年   55篇
  2005年   36篇
  2004年   47篇
  2003年   43篇
  2002年   32篇
  2001年   21篇
  2000年   27篇
  1999年   18篇
  1998年   12篇
  1997年   12篇
  1996年   13篇
  1995年   3篇
  1994年   11篇
  1993年   9篇
  1992年   17篇
  1991年   5篇
  1990年   2篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1982年   2篇
  1981年   2篇
  1978年   2篇
  1977年   4篇
  1976年   6篇
  1972年   2篇
  1969年   2篇
  1966年   2篇
  1961年   2篇
  1960年   4篇
  1958年   4篇
  1956年   3篇
排序方式: 共有954条查询结果,搜索用时 15 毫秒
1.
Liquid-liquid-solid systems are becoming increasingly common in everyday life with many possible applications. Here, we focus on a special case of such liquid-liquid-solid systems, namely, capillary suspensions. These capillary suspensions originate from particles that form a network based on capillary forces and are typically composed of solids in a bulk liquid with an added secondary liquid. The structure of particle networks based on capillary bridges possesses unique properties compared with networks formed via other attractive interactions where these differences are inherently related to the properties of the capillary bridges, such as bridge breaking and coalescence between adjacent bridges. Thus, to tailor the mechanical properties of capillary suspensions to specific requirements, it is important to understand the influences on different length scales ranging from the dynamics of the bridges with varying external stimuli to the often heterogeneous network structure.  相似文献   
2.
3.
This work presents a synergy between organic electronics and supramolecular chemistry, in which a host–guest complex is designed to function as an efficacious electronic material. Specifically, the noncovalent recognition of a fullerene, phenyl-C61-butyric acid methyl ester ( PC61BM ), by an alternating perylene diimide ( P )-bithiophene ( B ) conjugated macrocycle ( PBPB ) results in a greater than five-fold enhancement in electron mobility, relative to the macrocycle alone. Characterization and quantification of the binding of fullerenes by host PBPB is provided alongside evidence for intermolecular electronic communication within the host–guest complexes.  相似文献   
4.
Self-assembled monolayers (SAMs) based on oligopeptides have garnered immense interest for a wide variety of innovative biomedical and electronic applications. However, to exploit their full potential, it is necessary to understand and control the surface chemistry of oligopeptides. Herein, we report on how different electrical potentials affect the adsorption kinetics, stability and surface coverage of charged oligopeptide SAMs on gold surfaces. Kinetic analysis using electrochemical surface plasmon resonance (e-SPR) reveals a slower oligopeptide adsorption rate at more positive or negative electrical potentials. Additional analysis of the potential-assisted formed SAMs by X-ray photoelectron spectroscopy demonstrates that an applied electrical potential has minimal effect on the packing density. These findings not only reveal that charged oligopeptides exhibit a distinct potential-assisted assembly behaviour but that an electrical potential offers another degree of freedom in controlling their adsorption rate.  相似文献   
5.
6.
Hydrogen-bonded organic frameworks (HOFs) with low densities and high porosities are rare and challenging to design because most molecules have a strong energetic preference for close packing. Crystal structure prediction (CSP) can rank the crystal packings available to an organic molecule based on their relative lattice energies. This has become a powerful tool for the a priori design of porous molecular crystals. Previously, we combined CSP with structure-property predictions to generate energy-structure-function (ESF) maps for a series of triptycene-based molecules with quinoxaline groups. From these ESF maps, triptycene trisquinoxalinedione (TH5) was predicted to form a previously unknown low-energy HOF (TH5-A) with a remarkably low density of 0.374 g cm−3 and three-dimensional (3D) pores. Here, we demonstrate the reliability of those ESF maps by discovering this TH5-A polymorph experimentally. This material has a high accessible surface area of 3,284 m2 g−1, as measured by nitrogen adsorption, making it one of the most porous HOFs reported to date.  相似文献   
7.
The energy landscapes of sub‐nanometre bimetallic coinage metal clusters are explored with the Threshold Algorithm coupled with the Birmingham Cluster Genetic Algorithm. Global and energetically low‐lying minima along with their permutational isomers are located for the Cu${_4 }$ Ag${_4 }$ cluster with the Gupta potential and density functional theory (DFT). Statistical tools are employed to map the connectivity of the energy landscape and the growth of structural basins, while the thermodynamics of interconversion are probed, based on probability flows between minima. Asymmetric statistical weights are found for pathways across dividing states between stable geometries, while basin volumes are observed to grow independently of the depth of the minimum. The DFT landscape is found to exhibit significantly more frustration than that of the Gupta potential, including several open, pseudo‐planar geometries which are energetically competitive with the global minimum. The differences in local minima and their transition barriers between the two levels of theory indicate the importance of explicit electronic structure for even simple, closed shell clusters.  相似文献   
8.
Many glycoproteins are intimately linked to the onset and progression of numerous heritable or acquired diseases of humans, including cancer. Indeed the recognition of specific glycoproteins remains a significant challenge in analytical method and diagnostic development. Herein, a hierarchical bottom-up route exploiting reversible covalent interactions with boronic acids and so-called click chemistry for the fabrication of glycoprotein selective surfaces that surmount current antibody constraints is described. The self-assembled and imprinted surfaces, containing specific glycoprotein molecular recognition nanocavities, confer high binding affinities, nanomolar sensitivity, exceptional glycoprotein specificity and selectivity with as high as 30 fold selectivity for prostate specific antigen (PSA) over other glycoproteins. This synthetic, robust and highly selective recognition platform can be used in complex biological media and be recycled multiple times with no performance decrement.  相似文献   
9.
A new vacancy ordered, anion deficient perovskite modification with composition of BaCoO2.67 (Ba3Co3O81) has been prepared via a two-step heating process. Combined Rietveld analysis of neutron and X-ray powder diffraction data shows a novel ordering of oxygen vacancies not known before for barium cobaltates. A combination of neutron powder diffraction, magnetic measurements, and density functional theory (DFT) studies confirms G-type antiferromagnetic ordering. From impedance measurements, the electronic conductivity of the order of 10−4 S cm−1 is determined. Remarkably, the bifunctional catalytic activity for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is found to be comparable to that of Ba0.5Sr0.5Co0.8Fe0.2O3–y, confirming that charge-ordered anion deficient non-cubic perovskites can be highly efficient catalysts.  相似文献   
10.
A study has been made of the motion of long bubbles in inclined pipes containing viscous Newtonian and non-Newtonian liquids. A semi-theoretical expression for the rise velocity of air bubbles in water is derived on the hypothesis that the dominant factor is the momentum exchange of the bubble underflow, i.e. the bubble nose shape. The correlation calls on empirical inputs from established literature on bubble rise speeds at high Reynolds number. The effects of increasing Newtonian viscosity are analysed with reference to the momentum exchange and it is shown how viscosity reduces the inclination dependence of the bubble Froude number. Results from an experimental survey in seven different non-Newtonian liquids in three different diameter pipes are presented. These data are correlated so as to decouple the effects of surface tension and viscosity. An empirical relation is proposed for the effective shear rate in the fluid travelling around the bubble nose. Our correlation is compared to literature data from a broad range of Reynolds numbers with excellent agreement except at shallow angles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号