首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6297篇
  免费   566篇
  国内免费   222篇
化学   4146篇
晶体学   88篇
力学   406篇
数学   176篇
物理学   2269篇
  2024年   4篇
  2023年   476篇
  2022年   162篇
  2021年   195篇
  2020年   448篇
  2019年   203篇
  2018年   296篇
  2017年   353篇
  2016年   465篇
  2015年   411篇
  2014年   432篇
  2013年   372篇
  2012年   410篇
  2011年   219篇
  2010年   304篇
  2009年   274篇
  2008年   145篇
  2007年   217篇
  2006年   339篇
  2005年   166篇
  2004年   147篇
  2003年   167篇
  2002年   161篇
  2001年   282篇
  2000年   120篇
  1999年   271篇
  1998年   3篇
  1997年   6篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1980年   5篇
  1977年   4篇
  1976年   1篇
  1975年   1篇
  1973年   3篇
  1957年   1篇
排序方式: 共有7085条查询结果,搜索用时 15 毫秒
1.
2.
Through accumulation, mercury contamination in aquatic systems still poses serious health risks despite the strict regulations on drinking water and industrial discharge. One effective strategy against this is adsorptive removal, in which a suitably functionalized porous material is added to water treatment protocols. Thiol (SH) group-grafted structures perform commendably; however, insufficient attention is paid to the cost, scalability, and reusability or how the arrangement of sulfur atoms could affect the HgII binding strength. We used an inexpensive and scalable porous covalent organic polymer (COP-130) to systematically introduce thiol functional groups with precise chain lengths and sulfur content. Thiol-functionalized COP-130 demonstrates enhanced wettability and excellent HgII uptake of up to 936 mg g−1, with fast kinetics and exceptionally high selectivity. These Hg adsorbents are easily regenerated with HCl and can be used at least six times without loss of capacity even after treatment with strong acid, a rare performance in the domain of Hg-removal research.  相似文献   
3.
Bismuth containing hybrid molecular ferroelectrics are receiving tremendous attention in recent years owing to their stable and non-toxic composition. However, these perovskite-like structures are primarily limited to ammonium cations. Herein, we report a new phosphonium based discrete perovskite-like hybrid ferroelectric with a formula [Me(Ph)3P]3[Bi2Br9] ( MTPBB ) and its mechanical energy harvesting capability. The Polarization-Electric field (P-E) measurements resulted in a well-defined ferroelectric hysteresis loop with a remnant polarization value of 2.1 μC cm−2. Piezoresponse force microscopy experiments enabled visualization of the ferroelectric domain structure and evaluation of the piezoelectric strain coefficient (d33) for an MTPBB single crystal and thin film sample. Furthermore, flexible devices incorporating MTPBB in polydimethylsiloxane (PDMS) matrix at various concentrations were fabricated and explored for their mechanical energy harvesting properties. The champion device with 20 wt % of MTPBB in PDMS rendered a maximum peak-to-peak open-circuit voltage of 22.9 V and a maximum power density of 7 μW cm−2 at an optimal load of 4 MΩ. Moreover, the potential of MTPBB -based devices in low power electronics was demonstrated by storing the harvested energy in various electrolytic capacitors.  相似文献   
4.
Journal of Thermal Analysis and Calorimetry - The present study numerically investigates the optimization of thermal performance in a dimpled channel using a promising genre of nanofluid which is...  相似文献   
5.
Journal of Solid State Electrochemistry - The synergistic effects between two Keggin-type heteropoly acids (HPAs) and carbon surface were examined and elucidated. An improved high rate capability...  相似文献   
6.
《Mendeleev Communications》2019,29(4):400-402
  1. Download : Download high-res image (99KB)
  2. Download : Download full-size image
  相似文献   
7.
This paper presents temperature measurements in turbulent dilute and dense spray flames using single-laser-shot chirped-probe-pulse femtosecond coherent anti-Stokes Raman spectroscopy (CPP-fs-CARS). This ultrafast technique, with a repetition rate of 5 kHz, is applied to the piloted Sydney Needle Spray Burner (SYNSBURNTM). The burner system features air-blast atomization of liquid injected from a needle that can be translated within a co-flowing air stream. The pilot-stabilized spray flames can range between the two extremes of dense and dilute by physically translating the needle tip relative to the burner's exit plane. The CPP-fs-CARS set-up has achieved integration times of 3 picoseconds (ps) as well as spatial resolution of approximately 800 µm along beam propagation and 60 µm in the transverse dimension. Brief details of the technique, calibration, correction of interferences, and spectral fitting processes are presented along with estimates of the associated error. The measurements are compared against well-established, line Raman–Rayleigh data for temperature collected in a turbulent CH4/air jet diffusion flame, which is largely non-sooting. At peak gaseous flame temperatures of up to 2512 K, the relative accuracy and precision were 2.8% and ±3.4%, respectively. Measurements in turbulent spray flames are shown after applying the relevant corrections based on non-resonant background (NRB) behavior and camera saturation effects on the shape of the CARS signal spectrum. Preliminary mapping of the temperature fields demonstrates the wealth of information available in this dataset which will provide insights into the spatio-temporal structure of spray flames once relevant statistical analysis is applied.  相似文献   
8.
The behaviors of ferromagnetic transition metals of the first period: Fe, Co and Ni are examined within density functional theory calculations in two dimensional carbon extended networks using model structure LiC6. Around geometry optimized structures, the energy-volume equations of states considering non magnetic and spin polarized configurations established ferromagnetic ground states with magnetizations –reduced with respect to the metals’– of 2 μB for FeC6 and 1 μB for CoC6 while no magnetic solution could be identified for NiC6. In the D6h point group of the P6/mmm space group lm decomposition of the d states results with increasing energy into doublet state E1g with d(x2-y2) and d(xy); singlet state A1g d(z2) and doublet state E2g d(xz) and d(yz) lying on EF and responsible of the onset of magnetic moments. This was mirrored via molecular orbital approach with a construct of Fe embedded between two extended carbon networks thus validating the model structure proposed for TC6 compounds. The 100% polarization in one spin channel allows proposing potential uses in spintronics applications.  相似文献   
9.
《中国化学快报》2020,31(6):1593-1597
As one of the most environmentally friendly photovoltaic(PV) conversion equipments,aqueousprocessed CdTe nanocrystal solar cells(NC SCs) have attracted great interest in recent years because of their excellent properties such as high charge-carrier mobility and broad absorption.However,two issues including interfacial recombination and leakage current seriously restrict their performance.In this paper,insulating polymer poly(vinyl pyrrolidone)(PVP) is introduced into CdTe NC SCs to solve the problems.The experimental results of transmission electron microscopy(TEM),atomic force micro scopy(AFM) and dark current measurements,etc.,demonstrate the leakage current is effectively suppressed by introducing PVP.Through further designing device structure,the reduction of interfacial recombination after introducing PVP is confirmed.By strategically taking the advantages of PVP properties(e.g.,water solubility and thermostability),the power conversion efficiency of the devices with PVP is enhanced by almost 37% compared to pure CdTe devices.This work demonstrates an effective and low-cost method to fabricate NC SCs via aqueous route.Moreover,it also proves that appropriate content of insulating polymer is of beneficial in promoting the PV performance.  相似文献   
10.
Understanding the thermal aggregation behavior of metal atoms is important for the synthesis of supported metal clusters. Here, derived from a metal–organic framework encapsulating a trinuclear FeIII2FeII complex (denoted as Fe3) within the channels, a well-defined nitrogen-doped carbon layer is fabricated as an ideal support for stabilizing the generated iron nanoclusters. Atomic replacement of FeII by other metal(II) ions (e.g., ZnII/CoII) via synthesizing isostructural trinuclear-complex precursors (Fe2Zn/Fe2Co), namely the “heteroatom modulator approach”, is inhibiting the aggregation of Fe atoms toward nanoclusters with formation of a stable iron dimer in an optimal metal–nitrogen moiety, clearly identified by direct transmission electron microscopy and X-ray absorption fine structure analysis. The supported iron dimer, serving as cooperative metal–metal site, acts as efficient oxygen evolution catalyst. Our findings offer an atomic insight to guide the future design of ultrasmall metal clusters bearing outstanding catalytic capabilities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号