首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   2篇
力学   2篇
物理学   2篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2015年   1篇
  2014年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
There would be a major effect on the cartilage regeneration characteristics of ceramic material in a substrate implant requiring biologically active biomaterials and the reinforcement phase. At this moment, we produced collagen-hyaluronic acid @ hydroxyapatite-halloysite nanotube-single walled carbon nanotube composites, which is a successful technique for making a scaffold with a superior counter for cartilage property. FTIR, XRD, and SEM-EDAX were used to perform morphological and structural studies. The prepared composite's surface feature was investigated and discovered by HRTEM-SAED analysis, and it observed porous nature. The simulated body fluids (SBF) assessment of the materials was noticed their bioactivity and chondrocytes to determine their biocompatibility. Hybrid composite displayed promise for cartilage tissue engineering despite mesenchymal stem cells compatibility effect and magnificently demonstrated an antibacterial effect without antibiotics. The live/dead cells analysis shows that the composite can significantly improve mesenchymal stem cells, and the composite has the potential ability for cartilage regeneration. The above characteristics make the material quite interesting and important in the area for regenerative medicinal uses.  相似文献   
2.
Large-amplitude vibrations of liquid-filled cantilevered (clamped–free) circular cylindrical tanks are studied theoretically for the first time. The influence of liquid height and initial geometric imperfections is investigated in detail. The tank motions are described by a nonlinear model based on Flügge׳s shell theory, and the liquid motions are modelled by means of linearized potential flow theory. Equations of motion are obtained using the extended Hamilton׳s principle and are discretized by expanding the solution with trigonometric functions in the circumferential direction and the cantilevered beam eigenfunctions in the axial direction. The geometric boundary conditions are satisfied exactly, while the natural ones are satisfied in an energy minimization sense. The system is integrated numerically by employing the appropriate modal composition of the solution to guarantee convergence. Results are presented in the form of frequency–response curves in the neighbourhood of the lowest natural frequency. It is found that the response may be of softening or hardening type, depending on the liquid height and the imperfection parameters.  相似文献   
3.
The search for safe and effective ferroptosis-inhibitors has become an important topic. Geraniin, an ellagitannin bearing hexahydroxydiphenoyl (HHDP) and dehydrohexahydroxydiphenoyl (DHHDP) groups, was observed to inhibit erastin-induced ferroptosis in bone marrow-derived mesenchymal stem cells (bmMSCs). To determine the mechanism, geraniin was further analyzed using UV-vis spectra and several colorimetric assays, where its IC50 values were always much lower than that of the Trolox positive control. When interacted with several free radicals, geraniin gave no radical adduct formation (RAF) peak in the ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. In conclusion, geraniin exhibits ferroptosis-inhibitory potential towards erastin-treated bmMSCs; such potential may mainly stem from its strong lipid peroxidation (LPO)-inhibition, Fe2+-chelating, and antioxidant actions. Geraniin gives neither dimer nor radical adduct, owing to the bulky HHDP (or DHHDP) group; thus, it is considered as a safe and effective ferroptosis-inhibitor.  相似文献   
4.
Photoacoustic imaging is a hybrid biomedical imaging technique, combining rich optical contrasts and good acoustic resolution in deep tissues. As a noninvasive and nonionized imaging method, photoacoustic imaging has shown great potentials in biomedicine in the past decade. In this review, we give a brief introduction of the physical principle and three major implementations of photoacoustic imaging. Then, we present pictures of some recent progress about the extraction of new imaging parameters from photoacoustic radio-frequency signals. These parameters are highly associated with the tissue microstructure characteristics, including characteristic size, number density, and elasticity. This information could give us insight into various properties of tissue in-depth and be applied to tissue classification for basic research and clinical settings.  相似文献   
5.
In this paper, the nonlinear forced vibration behavior of composite plates reinforced by carbon nanotubes is investigated by a numerical approach. The reinforcement is considered to be functionally graded (FG) in the thickness direction according to a micromechanical model. The first-order shear deformation theory and von Kármán-type kinematic relations are employed. The governing equations and the corresponding boundary conditions are derived with the use of Hamilton's principle. The generalized differential quadrature (GDQ) method is utilized to achieve a discretized set of nonlinear governing equations. A Galerkin-based scheme is then applied to obtain a time-varying set of ordinary differential equations of Duffing-type. Subsequently, a time periodic discretization is done and the frequency response of plates is determined via the pseudo-arc length continuation method. Selected numerical results are given for the effects of different parameters on the nonlinear forced vibration characteristics of uniformly distributed carbon nanotube- and FG carbon nanotube-reinforced composite plates. It is found that with the increase of CNT volume fraction, the flexural stiffness of plate increases; and hence its natural frequency gets larger. Moreover, it is observed that the distribution type of CNTs significantly affects the vibrational behavior of plate. The results also show that when the mid-plane of plate is CNT-rich, the natural frequency takes its minimum value and the hardening-type response of plate is intensified.  相似文献   
6.
《力学快报》2023,13(2):100405
In-situ layerwise imaging measurement of laser powder bed fusion (LPBF) provides a wealth of forming and defect data which enables monitoring of components quality and powder bed homogeneity. Using high-resolution camera layerwise imaging and image processing algorithms to monitor fusion area and powder bed geometric defects has been studied by many researchers, which successfully monitored the contours of components and evaluated their accuracy. However, research for the methods of in-situ 3D contour measurement or component edge warping identification is rare. In this study, a 3D contour measurement method combining gray intensity and phase difference is proposed, and its accuracy is verified by designed experiments. The results show that the high-precision of the 3D contours can be achieved by the constructed energy minimization function. This method can detect the deviations of common geometric features as well as warpage at LPBF component edges, and provides fundamental data for in-situ quality monitoring tools.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号