首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   17篇
  国内免费   9篇
化学   92篇
晶体学   2篇
力学   69篇
数学   35篇
物理学   86篇
  2022年   3篇
  2021年   3篇
  2020年   24篇
  2019年   11篇
  2018年   11篇
  2017年   32篇
  2016年   19篇
  2015年   15篇
  2014年   13篇
  2013年   7篇
  2012年   12篇
  2011年   17篇
  2010年   17篇
  2009年   13篇
  2008年   10篇
  2007年   13篇
  2006年   9篇
  2005年   9篇
  2004年   7篇
  2003年   10篇
  2002年   7篇
  2001年   6篇
  2000年   1篇
  1999年   12篇
  1998年   1篇
  1996年   1篇
  1990年   1篇
排序方式: 共有284条查询结果,搜索用时 15 毫秒
1.
Uniaxial stress-controlled ratcheting experiments on PTFE gaskets under cyclic compressive loads with small stress amplitude were performed. The effect of temperature on the deformation behavior was considered. Results showed that the compressive modulus decreases rapidly when the temperature increases from 100 °C to 200 °C. Compressive ratcheting deformation with cycles increase significantly with the increases of temperature. The ratcheting deformations at 100 °C, 150 °C and 200 °C are nearly two, three and five times that at room temperature, respectively. Most of ratcheting deformation mainly occurs during the first 20 cycles because the subsequent ratcheting rate and strain range are small and much less than those in the previous cycles. The accumulated deformation under cyclic loads with small stress amplitude is relatively approach to the static compressive creep with the same peak stress. Therefore, the accumulated deformation with time of PTFE gaskets obtained by cyclic compression with small stress amplitude can be estimated by the corresponding static creep deformation with good accuracy under the approximate stress rate and the same temperature, especially at room temperature.  相似文献   
2.
Styrene-based shape memory polymer (SMP) tubes were fabricated and their basic mechanical properties in different deformation states were investigated. The tensile, compression, bending and twisting shape memory properties of the tubes were analyzed and discussed, and the results indicated that SMP tubes exhibit good shape fixity ratio and shape recovery ratio. In addition, the shape recovery behavior was investigated at different heating rates. These experimental results will provide guidance for future applications of SMP tube structures.  相似文献   
3.
A major concern affecting the efficient use of composite laminates is the effect of low velocity impact damage on the structural integrity [1–3]. The aim of this study is to characterize and assess the effect of laminate thickness, ply-stacking sequence and scaling technique on the damage resistance of CFRP laminates subjected to low velocity impact. Drop-weight impact tests are carried out to determine impact response. Ultrasonic C-scanning and cross-sectional micrographs are examined to assess failure mechanisms of the different configurations.It is observed that damage resistance decreases as impact energy increases. In addition, thicker laminates show lower absorbed energy but, conversely, a more extensive delamination due to higher bending stiffness. Thinner laminates show higher failure depth. Furthermore, quasi-isotropic laminates show better performance in terms of damage resistance. Finally, the results obtained demonstrate that introducing ply clustering had a negative effect on the damage resistance and on the delamination area.  相似文献   
4.
A series of yellow-emitting oxynitride Ca0.65Si10Al2O0.7N15.3:xEu2+ phosphors with α-sialon structure were synthesized. The phase composition and crystal structure were identified by X-ray diffraction and the Rietveld refinement. The excitation and emission spectra, reflectance spectra and thermal stability were investigated in detail, respectively. Results show that Ca0.65Si10Al2O0.7N15.3:0.12Eu2+ phosphors can be efficiently excited by UV-Vis light in the broad range of 290–450 nm and exhibit broad emission spectra peaking at 550–575 nm. The concentration quenching mechanism are discussed in detail and determined to be the dipole-dipole interaction. When the temperature increased to 150 °C, the emission intensity of Ca0.65Si10Al2O0.7N15.3:0.12Eu2+ phosphor is 88.46% of the initial value at room temperature. White LED was fabricated with N-UV LED chip combined with blue Ca3Si2O4N2:Ce3+ and yellow Ca0.65Si10Al2O0.7N15.3:Eu2+ phosphors. The color rendering index and correlated color temperature of this white LED were measured to 78.94 and 6728.12 K, respectively. All above results demonstrate that the as-prepared Ca0.65Si10Al2O0.7N15.3:xEu2+ may serve as a potential yellow phosphor for N-UV w-LEDs.  相似文献   
5.
In this paper, we analyze the effect of a combined pure homogeneous strain and simple shear in a principal plane of the latter on the propagation of surface waves for an incompressible isotropic elastic half-space whose boundary is normal to the glide planes of the shear. This generalizes previous work in which, separately, pure homogeneous strain and simple shear were considered. For a special class of materials, the secular equation is obtained in explicit form and then specialized to recover results obtained previously for the two cases mentioned above. A method for obtaining the secular equation for a general form of strain–energy function is then outlined. In general, this is very lengthy and the result is not listed, but, for the case in which there is no normal stress on the half-space boundary, the result is given, for illustration, in respect of the so-called generalized Varga material. Numerical results are given to show how the surface wave speed depends on both the underlying pure homogeneous strain and the superimposed simple shear. Further numerical results are provided for the Gent model of limiting chain extensibility.  相似文献   
6.
This paper discusses the different electromagnetic boundary conditions on the crack-faces in magnetoelectroelastic materials, which possess coupled piezoelectric, piezomagnetic and magnetoelectric effects. A notch of finite thickness in these materials containing air (or vacuum) is also addressed. Four ideal crack-face electromagnetic boundary condition assumptions, that is, (a) electrically and magnetically impermeable crack, (b) electrically impermeable and magnetically permeable crack, (c) electrically permeable and magnetically impermeable crack and (d) electrically and magnetically permeable crack, are investigated separately. The influence of notch thickness on the field intensity factors at notch tips and the electromagnetic field inside the notch are obtained in closed-form. The results are compared with the ideal crack solutions. Applicability of crack-face electromagnetic boundary condition assumptions is discussed.  相似文献   
7.
The electroelastic analysis of two bonded dissimilar piezoelectric ceramics with a crack perpendicular to and terminating at the interface is made. By using Fourier integral transform, the associated boundary value problem is reduced to a singular integral equation with generalized Cauchy kernel, the solution of which is given in closed form. Results are presented for a permeable crack under anti-plane shear loading and in-plane electric loading. Obtained results indicate that the electroelastic field near the crack tip in the homogeneous piezoelectric ceramic is dominated by a traditional inverse square-root singularity, while the electroelastic field near the crack tip at the interface exhibits the singularity of power law rα, r being distance from the interface crack tip and α depending on the material constants of a bi-piezoceramic. In particular, electric field has no singularity at the crack tip in a homogeneous solid, whereas it is singular around the interface crack tip. Numerical results are given graphically to show the effects of the material properties on the singularity order and field intensity factors.  相似文献   
8.
In the analysis of materials with random heterogeneous microstructure the assumption is often made that material behavior can be represented by homogenized or effective properties. While this assumption yields accurate results for the bulk behavior of composite materials, it ignores the effects of the random microstructure. The spatial variations in these microstructures can focus, initiate and propagate localized non-linear behavior, subsequent damage and failure. In previous work a computational method, moving window micromechanics (MW), was used to capture microstructural detail and characterize the variability of the local and global elastic response. Digital images of material microstructure described the microstructure and a local micromechanical analysis was used to generate spatially varying material property fields. The strengths of this approach are that the material property fields can be consistently developed from digital images of real microstructures, they are easy to import into finite element models (FE) using regular grids, and their statistical characterizations can provide the basis for simulations further characterizing stochastic response. In this work, the moving window micromechanics technique was used to generate material property fields characterizing the non-linear behavior of random materials under plastic yielding; specifically yield stress and hardening slope, post yield. The complete set of material property fields were input into FE models of uniaxial loading. Global stress strain curves from the FE–MW model were compared to a more traditional micromechanics model, the generalized method of cells. Local plastic strain and local stress fields were produced which correlate well to the microstructure. The FE–MW method qualitatively captures the inelastic behavior, based on a non-linear flow rule, of the sample continuous fiber composites in transverse uniaxial loading.  相似文献   
9.
Zinc ferrite (ZnFe2O4)y nanoparticles/Cu0.5Tl0.5Ba2Ca2Cu3O10−δ (CuTl-1223) superconductor composites with y = 0–2 wt.% were prepared by adding ZnFe2O4 nanoparticles into CuTl-1223 superconductor matrix and characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier transforms infrared (FTIR) spectroscopy and dc-resistivity (ρ) measurements. The bulk CuTl-1223 superconductor matrix was synthesized by solid-state reaction and Zinc ferrite (ZnFe2O4) nanoparticles were separately prepared by sol–gel method. XRD analysis revealed the tetragonal and spinel structure of CuTl-1223 superconductor and ZnFe2O4 nanoparticles, respectively. The XRD analysis showed that increased concentration of ZnFe2O4 nanoparticles doesn't disturb the tetragonal structure of host CuTl-1223 superconductor matrix and has no appreciable effect on its lattice parameters. The SEM images confirm the granular structure of the host superconductor matrix. The presence of ZnFe2O4 nanoparticles in host superconductor matrix is confirmed by using FTIR study. Variation of zero resistivity critical temperature {Tc (0)} depends upon the concentration of the nanoparticles in the host superconductor matrix. The overall suppression of Tc (0) and diamagnetism with increasing nanoparticles concentration is most probably due to trapping of mobile free carriers and reflection of spin charge due to presence of paramagnetic ZnFe2O4 nanoparticles. There is possibility for the incorporation of Fe and Zn in the lattice sites during the synthesis process, which may also cause the reduction of Tc (0) of the final composites.  相似文献   
10.
This paper presents temperature measurements in turbulent dilute and dense spray flames using single-laser-shot chirped-probe-pulse femtosecond coherent anti-Stokes Raman spectroscopy (CPP-fs-CARS). This ultrafast technique, with a repetition rate of 5 kHz, is applied to the piloted Sydney Needle Spray Burner (SYNSBURNTM). The burner system features air-blast atomization of liquid injected from a needle that can be translated within a co-flowing air stream. The pilot-stabilized spray flames can range between the two extremes of dense and dilute by physically translating the needle tip relative to the burner's exit plane. The CPP-fs-CARS set-up has achieved integration times of 3 picoseconds (ps) as well as spatial resolution of approximately 800 µm along beam propagation and 60 µm in the transverse dimension. Brief details of the technique, calibration, correction of interferences, and spectral fitting processes are presented along with estimates of the associated error. The measurements are compared against well-established, line Raman–Rayleigh data for temperature collected in a turbulent CH4/air jet diffusion flame, which is largely non-sooting. At peak gaseous flame temperatures of up to 2512 K, the relative accuracy and precision were 2.8% and ±3.4%, respectively. Measurements in turbulent spray flames are shown after applying the relevant corrections based on non-resonant background (NRB) behavior and camera saturation effects on the shape of the CARS signal spectrum. Preliminary mapping of the temperature fields demonstrates the wealth of information available in this dataset which will provide insights into the spatio-temporal structure of spray flames once relevant statistical analysis is applied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号