收费全文 |
4554篇 |

完全免费 |
50篇 |

物理学 |
4604篇 |

2019年 |
15篇 |

2018年 |
69篇 |

2017年 |
85篇 |

2016年 |
53篇 |

2015年 |
81篇 |

2014年 |
103篇 |

2013年 |
215篇 |

2012年 |
175篇 |

2011年 |
290篇 |

2010年 |
221篇 |

2009年 |
196篇 |

2008年 |
223篇 |

2007年 |
295篇 |

2006年 |
264篇 |

2005年 |
219篇 |

2004年 |
222篇 |

2003年 |
222篇 |

2002年 |
206篇 |

2001年 |
178篇 |

2000年 |
164篇 |

1999年 |
145篇 |

1998年 |
104篇 |

1997年 |
107篇 |

1996年 |
78篇 |

1995年 |
55篇 |

1994年 |
64篇 |

1993年 |
48篇 |

1992年 |
50篇 |

1991年 |
64篇 |

1990年 |
50篇 |

1989年 |
53篇 |

1988年 |
42篇 |

1987年 |
29篇 |

1986年 |
27篇 |

1985年 |
12篇 |

1984年 |
18篇 |

1983年 |
11篇 |

1982年 |
16篇 |

1981年 |
25篇 |

1980年 |
12篇 |

1979年 |
17篇 |

1978年 |
7篇 |

1977年 |
7篇 |

1976年 |
7篇 |

1975年 |
6篇 |

1974年 |
5篇 |

1973年 |
9篇 |

1972年 |
13篇 |

1971年 |
5篇 |

1970年 |
5篇 |

1969年 |
8篇 |

1968年 |
5篇 |

1967年 |
4篇 |

**排序方式：**共有4604条查询结果，搜索用时 31 毫秒

**总被引：15，自引：0，他引：15**Model systems range from the unique water structures at solid surfaces and water shells around proteins and biomembranes, via amino and nucleic acids, proteins, DNA, phospholipid membranes, to cells and living tissue at surfaces. At one end of the spectrum the scientific challenge is to map out the structures, bonding, dynamics and kinetics of biomolecules at surfaces in a similar way as has been done for simple molecules during the past three decades in surface science. At the other end of the complexity spectrum one addresses how biofunctional surfaces participate in and can be designed to constructively participate in the total communication system of cells and tissue.

Biofunctional surfaces call for advanced design and preparation in order to match the sophisticated (bio) recognition ability of biological systems. Specifically this requires combined topographic, chemical and visco-elastic patterns on surfaces to match proteins at the nm scale and cells at the micrometer scale. Essentially all methods of surface science are useful. High-resolution (e.g. scanning probe) microscopies, spatially resolved and high sensitivity, non-invasive optical spectroscopies, self-organizing monolayers, and nano- and microfabrication are important for BioSS. However, there is also a need to adopt or develop new methods for studies of biointerfaces in the native, liquid state.

For the future it is likely that BioSS will have an even broader definition than above and include native interfaces, and that combinations of molecular (cell) biology and BioSS will contribute to the understanding of the “living state”. 相似文献

**总被引：10，自引：0，他引：10**

**总被引：9，自引：2，他引：7**

**总被引：7，自引：0，他引：7***B*() is derived. This is a quantum analogue of the Lévy-Khinchin formula. As a result the general form of a large class of Markovian quantum-mechanical master equations is obtained. 相似文献

**总被引：7，自引：0，他引：7**

**总被引：5，自引：0，他引：5**^{2+}:MgAl

_{2}O

_{4}was here used as the saturable absorber. Received: 21 December 2001 / Revised version: 14 April 2002 / Published online: 8 August 2002 相似文献

*H(f/M)*=

*f*log(

*f/M*)

*dv*be the relative entropy of

*f*and the Maxwellian with the same mass, momentum, and energy, and denote the corresponding entropy dissipation term in the Boltzmann equation by

*D(f)*=

*Q(f,f)*log

*f dv*. An example is presented which shows that |

*D(f)/H(f/M)*| can be arbitrarily small. This example is a sequence of isotropic functions, and the estimates are very explicitly given by a simple formula for

*D*which holds for such functions. The paper also gives a simplified proof of the so-called Povzner inequality, which is a geometric inequality for the magnitudes of the velocities before and after an elastic collision. That inequality is then used to prove that

*f*(v) |

*v*|

^{s}

*dt*<

*C(t)*, where

*f*is the solution of the spatially homogeneous Boltzmann equation. Here

*C(t)*is an explicitly given function depending

*s*and the mass, energy, and entropy of the initial data. 相似文献