首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4235篇
  免费   705篇
  国内免费   371篇
化学   2979篇
晶体学   33篇
力学   268篇
综合类   34篇
数学   421篇
物理学   1576篇
  2024年   6篇
  2023年   122篇
  2022年   91篇
  2021年   150篇
  2020年   211篇
  2019年   161篇
  2018年   132篇
  2017年   117篇
  2016年   191篇
  2015年   166篇
  2014年   239篇
  2013年   259篇
  2012年   374篇
  2011年   363篇
  2010年   264篇
  2009年   264篇
  2008年   276篇
  2007年   268篇
  2006年   268篇
  2005年   180篇
  2004年   123篇
  2003年   108篇
  2002年   87篇
  2001年   72篇
  2000年   80篇
  1999年   99篇
  1998年   82篇
  1997年   86篇
  1996年   67篇
  1995年   90篇
  1994年   71篇
  1993年   44篇
  1992年   59篇
  1991年   41篇
  1990年   37篇
  1989年   24篇
  1988年   12篇
  1987年   9篇
  1986年   8篇
  1985年   5篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
排序方式: 共有5311条查询结果,搜索用时 171 毫秒
1.
Hosseini  Vahid Reza  Zou  Wennan 《Nonlinear dynamics》2022,109(3):1823-1850
Nonlinear Dynamics - In this paper, the numerical solution of time-fractional convection diffusion equations (TF-CDEs) is considered as a generalization of classical ones, nonexponential relaxation...  相似文献   
2.
Mesoporous silica-coated multi-branched gold nanoparticles (bAu@mesoSiO2) aiming for enhanced Raman sensing for 4-bromomethcathinone (4-BMC) detection is reported. In this work, we present an effective strategy to probe the Raman signal of 4-MBC. Morphologies and optical properties of the synthesized materials with different [Au3+]/[Au0] ratios are characterized utilizing transmission electron microscopy (TEM), UV–vis and mid-infrared spectroscopy. Both experimental and theoretical (simulation) studies were investigated. Taking advantages of gold core branches that provide highly localized and strongly enhanced electromagnetic fields due to plasmon resonance, surface-enhanced Raman scattering (SERS) is observed. The experimental results show that the SERS intensity exhibits a 100-fold increase with the increased average length and quantity of gold branches (nano tips). The analytical performance yielded a detection limit of 0.1?mg/ml for the 4-MBC target within 5?mins. The sensing method will likely find further improvement and broad use in the forensic science. Besides rapid detection and portability, the combination of the Raman effect and enhanced materials imparts other notable advantages, such as its non-contact and free of reagents.  相似文献   
3.
Improving the performance and reducing the manufacturing costs are the main directions for the development of organic solar cells in the future. Here, the strategy that uses chemical structure modification to optimize the photoelectric properties is reported. A new narrow bandgap (1.30 eV) chlorinated non-fullerene electron acceptor (Y15), based on benzo[d][1,2,3] triazole with two 3-undecyl-thieno[2′,3′:4,5] thieno[3,2-b] pyrrole fused -7-heterocyclic ring, with absorption edge extending to the near-infrared (NIR) region, namely A-DA'D-A type structure, is designed and synthesized. Its electrochemical and optoelectronic properties are systematically investigated. Benefitting from its NIR light harvesting, the fabricated photovoltaic devices based on Y15 deliver a high power conversion efficiency (PCE) of 14.13%, when blending with a wide bandgap polymer donor PM6. Our results show that the A-DA'D-A type molecular design and application of near-infrared electron acceptors have the potential to further improve the PCE of polymer solar cells (PSCs).  相似文献   
4.
Escherichia coli's copper efflux oxidase (CueO) has rarely been employed in the cathodic compartment of enzymatic biofuel cells (EBFCs) due to its low redox potential (0.36 V vs. Ag/AgCl, pH 5.5) towards O2 reduction. Herein, directed evolution of CueO towards a more positive onset potential was performed in an electrochemical screening system. An improved CueO variant (D439T/L502K) was obtained with a significantly increased onset potential (0.54 V), comparable to that of high‐redox‐potential fungal laccases. Upon coupling with an anodic compartment, the EBFC exhibited an open‐circuit voltage (Voc) of 0.56 V. Directed enzyme evolution by tailoring enzymes to application conditions in EBFCs has been validated and might, in combination with molecular understanding, enable future breakthroughs in EBFC performance  相似文献   
5.
Understanding the thermal aggregation behavior of metal atoms is important for the synthesis of supported metal clusters. Here, derived from a metal–organic framework encapsulating a trinuclear FeIII2FeII complex (denoted as Fe3) within the channels, a well-defined nitrogen-doped carbon layer is fabricated as an ideal support for stabilizing the generated iron nanoclusters. Atomic replacement of FeII by other metal(II) ions (e.g., ZnII/CoII) via synthesizing isostructural trinuclear-complex precursors (Fe2Zn/Fe2Co), namely the “heteroatom modulator approach”, is inhibiting the aggregation of Fe atoms toward nanoclusters with formation of a stable iron dimer in an optimal metal–nitrogen moiety, clearly identified by direct transmission electron microscopy and X-ray absorption fine structure analysis. The supported iron dimer, serving as cooperative metal–metal site, acts as efficient oxygen evolution catalyst. Our findings offer an atomic insight to guide the future design of ultrasmall metal clusters bearing outstanding catalytic capabilities.  相似文献   
6.
The quantum thermalization of the Jaynes–Cummings (JC) model in both equilibrium and non-equilibrium open-system cases is studied, in which the two subsystems, a two-level system and a single-mode bosonic field, are in contact with either two individual heat baths or a common heat bath. It is found that in the individual heat-bath case, the JC model can only be thermalized when either the two heat baths have the same temperature or the coupling of the JC system to one of the two baths is turned off. In the common heat-bath case, the JC system can be thermalized irrespective of the bath temperature and the system–bath coupling strengths. The thermal entanglement in this system is also studied. A counterintuitive phenomenon of vanishing thermal entanglement in the JC system is found and proved.  相似文献   
7.

In rock grouting, idealized 2D-radial laminar flow of yield stress fluids (YSF) is a fundamental flow configuration that is used for cement grout spread estimation. A limited amount of works have presented analytical and numerical solutions on the radial velocity profiles between parallel disks. However, to the best of our knowledge, there has been no experimental work that has presented measured velocity profiles for this geometry. In this paper, we present velocity profiles of Carbopol (a simple YSF), measured by pulsed ultrasound velocimetry within a radial flow model. We describe the design of the physical model and then present the measured velocity profiles while highlighting the plug-flow region and slip effects observed for three different apertures and volumetric flow rates. Although the measured velocity profiles exhibited wall slip, there was a reasonably good agreement with the analytical solution. We then discuss the major implications of our work on radial flow.

  相似文献   
8.
A novel water-soluble luminescent complex consisting of Eu(ally-dbm)\begin{document}$_3$\end{document}-2Tppo and poly(N-isopropyl acrylamide) (PNIPAM) is synthesized through a series of chemical reactions. The structure of the complex is characterized by TGA, GPC, HNMR, and the thermal-responsive fluorescence of the complex in aqueous solution is investigated. It is found that PNIPAM collapse above the lower critical solution temperature causes the coordination bond breaking, leading to weakening of the fluorescence from Eu\begin{document}$^{3+}$\end{document} and enhancing of the fluorescence from the ligands. When temperature decreases, the fluorescence from Eu\begin{document}$^{3+}$\end{document} is found to boost up and the fluorescence from ligands weakens accordingly. It is deduced from this phenomenon that the ligands re-coordinate with europium ions again along with the temperature decreasing, which is further confirmed by IR measurements. This thermal-responsive fluorescence is of reversibility, which can be used as molecular probes for biological imaging and collapse studying of PNIPAM.  相似文献   
9.
金属光阴极因其超短脉冲发射和运行寿命长的特性从而具有重要应用价值,但是较高的功函数和较强的电子散射使其需要采用高能量紫外光子激发且光电发射量子效率极低.本文利用Mie散射共振效应增强银纳米颗粒中的局域光学态密度,提升光吸收率和电子的输运效率,并利用激活层降低银的功函数,从而增强光阴极在可见光区的量子效率.采用时域有限差分方法分析银纳米球阵列的光学共振特性,采用磁控溅射和退火工艺在银/氧化锡铟复合衬底上制备银纳米球,紧接着在其表面沉积制备铯激活层,最后在高真空腔体中测试光电发射量子效率.实验结果表明平均粒径150 nm的银纳米球光阴极在425 nm波长的量子效率超过0.35%,为相同激活条件下银薄膜光阴极的12倍,峰值波长与理论计算的Mie共振波长相符合.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号