首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   2篇
  国内免费   1篇
化学   33篇
力学   1篇
数学   6篇
物理学   8篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   9篇
  2007年   6篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
排序方式: 共有48条查询结果,搜索用时 15 毫秒
1.
In this study, new chalcone compound 1 , new phthalonitrile derivatives 2 and 3, new copper(II), manganese(III) phthalocyanines bearing chalcone groups at peripheral or nonperipheral positions were synthesized. Electrochemistry of tetra-(4-{(2 E )-3-[2-fluoro-4-(trifluoromethyl)phenyl]prop-2-enoyl}phenoxy) substituted Co(II)Pc and Mn(III)Pcs were studied with cyclic voltammetry (CV) to determine the redox properties of the phthalocyanines. According to the results, while the CuPcs 2a and 3a showed two Pc based reduction reactions and one Pc based oxidation reaction, MnPcs 2b and 3b gave two metal-based reduction reactions. All the redox processes are shifted toward positive potentials as a result of the increased electron-withdrawing ability of the trifluoromethyl substituents.  相似文献   
2.
Journal of Applied Spectroscopy - Detailed measurements of nonlinear optical properties and optical limiting for four phthalocyanine (Pc) derivatives (PcCo, PcCu, PcMn, and PcSi) are reported. The...  相似文献   
3.
An approach to investigation of catalytical behaviors of Co (II) and Cu (II) phthalocyanines is reported that is based on changing any parameter to effect these behaviors. Towards this end, new anthracene substituted Co (II) and Cu (II) phthalocyanines were prepared and characterized spectroscopic methods. New cobalt (II) and copper (II) phthalocyanines were used as catalyst for oxidation of different phenolic compounds (such as 2,3‐dichlorophenol, 4‐methoxyphenol, 4‐nitrophenol, 2,3,6‐trimethylphenol) with different oxidants. Then, electrochemical characterization of cobalt (II) and copper (II) phthallocyanines were determined by using cyclic voltammetry (CV) and square wave voltammetry (SWV) techniques. Although copper (II) phthalocyanine showed similar Pc based electron transfer processes, cobalt (II) phthalocyanine showed metal and ligand based reduction reactions as expected.  相似文献   
4.
New 3,3‐diphenylpropoxyphthalonitrile (5) was obtained from 3,3‐diphenylpropanol (3) and 4‐nitrophthalonitrile (4) with K2CO3 in DMF at 50 °C. The novel cobalt(II) phthalocyanine complexes, tetrakis‐[2‐(1,4‐dioxa‐8‐azaspiro[4.5]dec‐8‐yl)ethoxy] phthalocyaninato cobalt(II) (2) and tetrakis‐(3,3‐diphenylpropoxy)phthalocyaninato cobalt(II) (6) were prepared by the reaction of the phthalonitrile derivatives 1 and 5 with CoCl2 by microwave irradiation in 2‐(dimethylamino)ethanol for at 175 °C, 350 W for 7 and 10 min, respectively. These new cobalt(II)phthalocyanine complexes were characterized by spectroscopic methods (IR, UV–visible and mass spectroscopy) as well as elemental analysis. Complexes 2 and 6 are employed as catalyst for the oxidation of cyclohexene using tert‐butyl hydroperoxide (TBHP), m‐chloroperoxybenzoic acid (m‐CPBA), aerobic oxygen and hydrogen peroxide (H2O2) as oxidant. It is observed that both complexes can selectively oxidize cyclohexene to give 2‐cyclohexene‐1‐ol as major product, and 2‐cyclohexen‐1‐one and cyclohexene oxide as minor products. TBHP was found to be the best oxidant since minimal destruction of the catalyst, higher selectivity and conversion were observed in the products. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
5.
6.
We introduce a new method to solve high order linear differential equations with initial and boundary conditions numerically. In this method, the approximate solution is based on rational interpolation and collocation method. Since controlling the occurrence of poles in rational interpolation is difficult, a construction which is found by Floater and Hormann [1] is used with no poles in real numbers. We use the Bernstein series solution instead of the interpolation polynomials in their construction. We find that our approximate solution has better convergence rate than the one found by using collocation method. The error of the approximate solution is given in the case of the exact solution f ∈ Cd+2[ab].  相似文献   
7.
In this study, a new phthalonitrile derivative 3 bearing 1,3-bis[3(dimethylamino)phenoxy]propan-2-ol 1, metal-free phthalocyanine (Pc) 4, metallophthalocyanines (MPcs) 57 and their quaternized derivatives 4a7a were synthesized. Metal-free Pc 4 was prepared by cyclotetramerization of phthalonitrile derivate 3 and MPcs 57 were synthesized by heating 3 with NiCl2, CoCl2 and CuCl2 in n-pentanol in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene, respectively. Quaternization of the dimethylamino functionality produced quaternized octacationic water soluble metal-free, Ni, Co and Cu Pcs which were soluble in water, DMF, DMSO. The aggregation behaviour of these compounds were investigated in different concentrations of chloroform for metal-free, Ni, Co and Cu Pcs. The effect of solvents on absorption spectra were studied in various organic solvents. The novel compounds were characterized using IR, 1H-, 13C NMR, UV–vis and MS spectral data.  相似文献   
8.
Radiative integral transfer equations for one-dimensional solid cylinder with absorbing, emitting and linearly anisotropic-scattering inhomogeneous medium were derived by Abulwafa et al. (JQSRT 62 (1999) 755). The anisotropic terms in the integral equations and their results for anisotropic benchmark problems (JQSRT 66 (2000) 487) are inaccurate. In this study, the integral equations for absorbing, emitting and linearly anisotropic-scattering medium are rederived, and the integral equations for one-dimensional solid cylindrical medium are solved. The results are compared with selected cases using the discrete ordinates S16 and the exact solutions available in the literature.  相似文献   
9.
The synthesis of metallophthalocyanines [69; M = Ni(II), Zn(II), Co(II) and Cu(II)] with four 1,2,4-triazole units obtained from 4-{(4-chloro-2-fluorobenzyl)[3-(4-chlorophenyl)-5-(4-methylphenyl)-4H-1,2,4-triazol-4-yl]amino}phthalonitrile (5) in the presence of dimethylaminoethanol and the corresponding anhydrous metal salts is described. The thermal stabilities of the Pc compounds were determined by thermogravimetric analysis. The new compounds were characterized by a combination of IR, 1H NMR, 13C NMR, UV–Vis, elemental analysis.  相似文献   
10.
Tetranitrile monomer (3) was synthesized by nucleophilic aromatic substitution of 1,5,9,13-tetrathiacyclohexadecane-3,11-diol (1) onto 4-nitrophthalonitrile (2). The metal-free phthalocyanine polymer (4) was prepared by the reaction of a tetranitrile monomer with 4-({11-[3-cyano-4-(cyanomethyl)phenoxy]-1,5,9,13-tetrathiacyclohexadecan-3-yl}oxy)phthalonitrile in 2-(dimethylamino)ethanol. Ni(II), Co(II), Cu(I)-phthalocyanine polymers were prepared by the reaction of the tetranitrile compound with the chlorides of Ni(II), Co(II) and Cu(I) in DMAE. Zn(II)-phthalocyanine polymer was prepared by the reaction of the tetranitrile compound with the acetates of Zn(II) in DMAE. The new compounds were characterized by a combination of IR, 1H NMR, 13C NMR, UV-Vis, elemental analysis and MS spectral data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号