首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1607篇
  免费   247篇
  国内免费   144篇
化学   1178篇
晶体学   10篇
力学   68篇
综合类   8篇
数学   177篇
物理学   557篇
  2024年   1篇
  2023年   41篇
  2022年   42篇
  2021年   50篇
  2020年   83篇
  2019年   72篇
  2018年   52篇
  2017年   55篇
  2016年   74篇
  2015年   81篇
  2014年   96篇
  2013年   117篇
  2012年   159篇
  2011年   175篇
  2010年   107篇
  2009年   94篇
  2008年   104篇
  2007年   96篇
  2006年   85篇
  2005年   71篇
  2004年   71篇
  2003年   31篇
  2002年   28篇
  2001年   10篇
  2000年   24篇
  1999年   26篇
  1998年   29篇
  1997年   19篇
  1996年   23篇
  1995年   15篇
  1994年   16篇
  1993年   5篇
  1992年   7篇
  1991年   7篇
  1990年   12篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   6篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
排序方式: 共有1998条查询结果,搜索用时 15 毫秒
1.
The AB system is the basic integrable model to describe unstable baroclinic wave packets in geophysical fluids and the propagation of mesoscale gravity flows in nonlinear optics. On the basis of the spectral analysis of a Lax pair and the inverse scattering method, we establish the Riemann–Hilbert problem of the AB system. Then, the inverse problems are formulated and solved with the aid of the Riemann–Hilbert problem, from which the potentials can be reconstructed according to the asymptotic expansion of the sectional analytic function and the related symmetry relations. As an application, we obtain the multi-bright-dark soliton solutions to the AB system in the reflectionless case and discuss the dynamic behavior of elastic soliton collisions by choosing appropriate free parameters.  相似文献   
2.
Wu  Dongquan  Zhai  Wei  Lee  Heow Pueh 《Meccanica》2021,56(8):2053-2082
Meccanica - Semi Reentrant structures, which exhibit zero Poisson’s ratio and monoclastic curvature, are combinations of hexagonal Honeycomb and auxetic Reentrant structures. Deflections and...  相似文献   
3.
20(R)-panaxadiol (PD) was metabolised by the fungus Aspergillus niger AS 3.3926 to its C-3 carbonylated metabolite and five other hydroxylated metabolites (1–6). Their structures were elucidated as 3-oxo-20(R)-panaxadiol (1), 3-oxo-7β-hydroxyl- 20(R)-panaxadiol (2), 3-oxo-7β,23α-dihydroxyl-20(R)-panaxadiol (3), 3,12-dioxo- 7β,23β-dihydroxyl-20(R)-panaxadiol (4), 3-oxo-1α,7β-dihydroxyl-20(R)-panaxadiol (5) and 3-oxo-7β,15β-dihydroxyl-20(R)-panaxadiol (6) by spectroscopic analysis. Among them, compounds 26 were new compounds. Pharmacological studies revealed that compound 6 exhibited significant anti-hepatic fibrosis activity.  相似文献   
4.
Eight-coordinated DyIII centres with D6h symmetry are expected to act as high-performance single-molecule magnets (SMMs) due to the simultaneous fulfilment of magnetic axiality and a high coordination number (a requisite for air stability). But the experimental realization is challenging due to the requirement of six coordinating atoms in the equatorial plane of the hexagonal bipyramid; this is usually too crowded for the central DyIII ion. Here a hexaaza macrocyclic Schiff base ligand and finetuned axial alkoxide/phenol-type ligands are used to show that a family of hexagonal bipyramidal DyIII complexes can be isolated. Among them, three complexes possess nearly perfect D6h local symmetry. The highest effective magnetic reversal barrier is found at 1338(3) K and an open hysteresis temperature of 6 K at the field sweeping rate of 1.2 mT s−1; this represents a new record for D6h SMMs.  相似文献   
5.
The design and synthesis of uranium sorbent materials with high uptake efficiency, capacity and selectivity, as well as excellent hydrolytic stability and radiation resistance remains a challenge. Herein, a polyoxometalate (POM)–organic framework material ( SCU‐19 ) with a rare inclined polycatenation structure was designed, synthesized through a solvothermal method, and tested for uranium separation. Under dark conditions, SCU‐19 can efficiently capture uranium through ligand complexation using its exposed oxo atoms and partial chemical reduction from UVI to UIV by the low‐valent Mo atoms in the POM. An additional UVI photocatalytic reduction mechanism can occur under visible light irradiation, leading to a higher uranium removal without saturation and faster sorption kinetics. SCU‐19 is the only uranium sorbent material with three distinct sorption mechanisms, as further demonstrated by X‐ray photoelectron spectroscopy (XPS) and X‐ray absorption near edge structure (XANES) analysis.  相似文献   
6.
To address the problems associated with poor conductivity and large volume variation in practical applications as a conversion cathode, engineering of hierarchical nanostructured FeOF coupled with conductive decoration is highly desired, yet rarely reported. Herein, 3D starfish-like FeOF on reduced graphene oxide sheets (FeOF/rGO) is successfully prepared, for the first time, through a combination of solvothermal reaction, self-assembly, and thermal reduction. Integrating the structural features of the 3D hierarchical nanostructure, which favorably shorten the path for electron/ion transport and alleviate volumetric changes, with those of graphene wrapping, which can further enhance the electrical conductivity and maintain the structural stability of the electrode, the as-prepared FeOF/rGO composite exhibits a superior lithium-storage performance, including a high reversible capacity (424.5 mA h−1 g−1 at 50 mA g−1), excellent stability (0.016 % capacity decay per cycle during 180 cycles), and remarkable rate capability (275.8 mA h−1 g−1 at 2000 mA g−1).  相似文献   
7.
The low-temperature oxidation mechanism of n?butyl radicals (n-C4H9) has been investigated by high level quantum chemical calculations coupled with the Rice–Ramsperger–Kassel–Marcus/Master Equation (RRKM/ME) theory. The potential energy surfaces (PES) were explored at the QCISD(T)/CBS//B3LYP/6-311++G(d,p) level. The temperature- and pressure-dependent rate constants were computed and fitted in modified Arrhenius parameters. The major reaction channels were discussed to more deeply understand the competing relationships between chain branching, chain propagation and termination reactions. The results show that the 1,5 H-shift reaction is more competitive than the 1,6 H-shift and 1,4 H-shift for isomerization reactions of n?butyl peroxy radicals, and the concerted HO2 elimination channel to form butene becomes more important at high temperatures. Furthermore, based on our calculations, a revised kinetic model was developed to describe n-butane oxidation. Good consistency between model predictions and experimental data was shown. This study enhances our understanding of the combustion mechanism of n-butane and can be used as a reliable reference for mechanistic understanding of larger alkanes.  相似文献   
8.
Lulu Fu  Jin Zhai 《Electrophoresis》2019,40(16-17):2058-2074
Biomimetic smart nanochannels have been studied extensively to achieve the precise ionic transport compared to biological ion channels. Similar to ion channels in living organisms, biomimetic smart nanochannels can respond to various stimuli, which allows for promising applications in many fields. In this review, we mainly summarize the recent advances in the design of biomimetic stimuli‐responsive nanochannels and their potential applications including biosensors and drug delivery. Finally, an outlook on the challenges and opportunities for biomimetic stimuli‐responsive nanochannels is provided.  相似文献   
9.
Tetrathiatriarylmethyl (TAM, trityl) radicals have found wide applications as spin probes/labels for EPR spectroscopy and imaging, and as polarizing agents for dynamic nuclear polarization. The high hydrophilicity of TAM radicals is essential for their biomedical applications. However, the synthesis of hydrophilic TAM radicals (e.g., OX063) is extremely challenging and has only been reported in the patent literature, to date. Herein, an efficient synthesis of a highly water-soluble TAM radical bis(8-carboxyl-2,2,6,6-tetramethylbenzo[1,2-d:4,5-d′]bis([1,3]dithiol-4-yl)-mono-(8-carboxyl-2,2,6,6-tetrakis(2-hydroxyethyl)benzo[1,2-d:4,5-d′]bis([1,3]dithiol-4-yl)methyl (TFO), which contains four additional hydroxylethyl groups, relative to the Finland trityl radical CT-03, is reported. Similar to OX063, TFO exhibits excellent properties, including high water solubility in phosphate buffer, low log P, low pKa, long relaxation times, and negligible binding with bovine serum albumin. On the other hand, TFO has a sharper EPR line and higher O2 sensitivity than those of OX063. Therefore, in combination with its facile synthesis, TFO should find wide applications in magnetic resonance related fields and this synthetic approach would shed new light on the synthesis of other hydrophilic TAM radicals.  相似文献   
10.
The bowl‐shaped C6v B36 cluster with a central hexagon hole is considered an ideal molecular model for low‐dimensional boron‐based nanosystems. Owing to the electron deficiency of boron, chemical bonding in the B36 cluster is intriguing, complicated, and has remained elusive despite a couple of papers in the literature. Herein, a bonding analysis is given through canonical molecular orbitals (CMOs) and adaptive natural density partitioning (AdNDP), further aided by natural bond orbital (NBO) analysis and orbital composition calculations. The concerted computational data establish the idea of concentric double π aromaticity for the B36 cluster, with inner 6π and outer 18π electron counting, which both conform to the (4n+2) Hückel rule. The updated bonding picture differs from existing knowledge of the system. A refined bonding model is also proposed for coronene, of which the B36 cluster is an inorganic analogue. It is further shown that concentric double π aromaticity in the B36 cluster is retained and spatially fixed, irrespective of the migration of the hexagonal hole; the latter process changes the system energetically. The hexagonal hole is a destabilizing factor for σ/π CMOs. The central hexagon hole affects substantially fewer CMOs, thus making the bowl‐shaped C6v B36 cluster the global minimum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号