首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   950篇
  免费   66篇
  国内免费   10篇
化学   617篇
晶体学   7篇
力学   38篇
综合类   1篇
数学   109篇
物理学   254篇
  2023年   4篇
  2021年   11篇
  2020年   14篇
  2019年   30篇
  2018年   12篇
  2017年   14篇
  2016年   26篇
  2015年   37篇
  2014年   33篇
  2013年   48篇
  2012年   77篇
  2011年   71篇
  2010年   46篇
  2009年   56篇
  2008年   42篇
  2007年   46篇
  2006年   45篇
  2005年   38篇
  2004年   31篇
  2003年   18篇
  2002年   26篇
  2001年   17篇
  2000年   19篇
  1999年   23篇
  1998年   8篇
  1997年   15篇
  1996年   12篇
  1995年   10篇
  1994年   10篇
  1993年   7篇
  1992年   6篇
  1991年   14篇
  1990年   9篇
  1989年   5篇
  1988年   13篇
  1987年   8篇
  1986年   6篇
  1985年   22篇
  1984年   13篇
  1983年   5篇
  1982年   5篇
  1981年   13篇
  1980年   4篇
  1979年   7篇
  1978年   6篇
  1977年   8篇
  1974年   7篇
  1973年   4篇
  1970年   4篇
  1969年   3篇
排序方式: 共有1026条查询结果,搜索用时 15 毫秒
1.
This study describes the development of a simple, enzyme-free, label-free, sensitive, and selective system for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles (Tween 20-AuNPs) as an efficient fluorescence quencher for boron dipyrromethene-conjugated adenosine 5′-triphosphate (BODIPY-ATP) and as a recognition element for adenosine. BODIPY-ATP can interact with Tween 20-AuNPs through the coordination between the adenine group of BODIPY-ATP and Au atoms on the NP surface, thereby causing the fluorescence quenching of BODIPY-ATP through the nanometal surface energy transfer (NSET) effect. When adenosine attaches to the NP surface, the attached adenosine exhibits additional electrostatic attraction to BODIPY-ATP. As a result, the presence of adenosine enhances the efficiency of AuNPs in fluorescence quenching of BODIPY-ATP. The AuNP-induced fluorescence quenching of BODIPY-ATP progressively increased with an increase in the concentration of adenosine; the detection limit at a signal-to-noise ratio of 3 for adenosine was determined to be 60 nM. The selectivity of the proposed system was more than 1000-fold for adenosine over any adenosine analogs and other nucleotides. The proposed system combined with a phenylboronic acid-containing column was successfully applied to the determination of adenosine in urine.  相似文献   
2.
We have synthesized a blue‐light‐emitting polyfluorene (PF) derivative ( PF‐CBZ‐OXD ) that presents bulky hole‐transporting carbazole and electron‐transporting oxadiazole pendent groups functionalized at the C‐9 positions of alternating fluorene units. The results from photoluminescence and electrochemical measurements indicate that both the side chains and the PF main chain retain their own electronic characteristics in the copolymer. An electroluminescent device incorporating this polymer as the emitting layer was turned on at 4.5 V; it exhibited a stable blue emission with a maximum external quantum efficiency of 1.1%. Moreover, we doped PF‐CBZ‐OXD and its analogue PF‐TPA‐OXD with a red‐light‐emitting iridium phosphor for use as components of phosphorescent red‐light emitters to investigate the effect of the host's HOMO energy level on the degree of charge trapping and on the electrophosphorescent efficiency. We found that spectral overlap and individual energy level matching between the host and guest were both crucial features affecting the performance of the electroluminescence devices. Atomic force microscopy measurements indicated that the dipolar nature of PF‐CBZ‐OXD , in contrast to the general nonpolarity of polydialkylfluorenes, provided a stabilizing environment that allowed homogeneous dispersion of the polar iridium triplet dopant. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2925–2937, 2007  相似文献   
3.
A numerical study of confined jets in a cylindrical duct is carried out to examine the performance of two recently proposed turbulence models: an RNG-based K-? model and a realizable Reynolds stress algebraic equation model. The former is of the same form as the standard K-? model but has different model coefficients. The latter uses an explicit quadratic stress-strain relationship to model the turbulent stresses and is capable of ensuring the positivity of each turbulent normal stress. The flow considered involves recirculation with unfixed separation and reatachment points and severe adverse pressure gradients, thereby providing a valuable test of the predictive capability of the models for complex flows. Calculations are performed with a finite volume procedure. Numerical credibility of the solutions is ensured by using second-order-accurate differencing schemes and sufficiently fine grids. Calculations with the standard K-? model are also made for comparison. Detailed comparisons with experiments show that the realizable Reynolds stress algebraic equation model consistently works better than does the standard K-? model in capturing the essential flow features, while the RNG-based K-? model does not seem to give improvements over the standard K-? model under the flow conditions considered.  相似文献   
4.
A large class of stereochemcial and related interactions in organic chemistry are repulsive and others are attractive, but the relative orientation of two methyl groups and the amount of energy required to twist one relative to the other (the hindered rotation energy barriers), or the alignment of such a group with respect to a conjugated ring to which it is attached (widely attributed to a mechanism called “hyperconjugation”) are estimated to be small in compared with the total energy of the molecule. We used theories of both isotropic and anisotropic proton hyperfine interactions in the π‐electron systems developed in the early sixties. They are approximated by the magnetic dipole nteractions between each proton and an electron spin magnetization that is distributed in 2s and 2p Slater atomic orbitals center on carbon atoms. We have extended these theories to the non‐planar olefinic cation radicals, which are very important in biochemistry as well as in petroleum catalysis. A three dimensional electron spin density equation has been developed in this paper to handle some Jahn‐Teller vibronic molecules. The new electron spin density equation related the observed proton hyperfine splittings to the non‐planar structures of the open‐chain alkene cation radicals generated by radiolysis and various chemical oxidation methods. The spin densities and the conformational calculations based on valence bond theory and symmetry principles are compared with some more elaborated molecular orbital calculations in the literature. The localized valence bond approaches are better in accord with our experimental results. The anomalous line‐width effect of the four methyl groups observed in the 2,3‐dimethyl‐2‐butene cation radicals also confirmed the positive sign of the electron‐proton hyperfine constant of hyper‐conjugation mechanism. A methyl substituent attached to a conjugated molecule often behaves as if it formed part of the region of conjugation; the charge appears to flow from the methyl group into the π electron system and it may also give rise to an appreciable dipole moment. Methylation also gives rise to an appreciable dipole moment, and the resultant red shift of electronic absorption bands is of some importance in the design of dye molecules.  相似文献   
5.
A model organic light-emitting diodes (OLEDs) with structure of tris(8-hydroxyquinoline) aluminum (Alq3)/N,N′-diphenyl-N,N′-bis[1-naphthy-(1,1′-diphenyl)]-4,4′-diamine (NPB)/indium tin oxide (ITO)-coated glass was fabricated for diffusion study by ToF-SIMS. The results demonstrate that ToF-SIMS is capable of delineating the structure of multi-organic layers in OLEDs and providing specific molecular information to aid deciphering the diffusion phenomena. Upon heat treatment, the solidity or hardness of the device was reduced. Complicated chemical reaction might occur at the NPB/ITO interface and results in the formation of a buffer layer, which terminates the upper diffusion of ions from underlying ITO.  相似文献   
6.
Size‐controllable polypyrrole (PPy)/multiwalled carbon nanotube (MWCNT) composites have been synthesized by in situ chemical oxidation polymerization directed by various concentrations of cationic surfactant cetyltrimethylammonium bromide (CTAB). Raman spectra, FTIR, SEM, and TEM were used to characterize their structure and morphology. These results showed that the composites are core (MWCNT)–shell (PPy) tubular structures with the thickness of the PPy layer in the range of 20–40 nm, depending on the concentration of CTAB. Raman and FTIR spectra of the composites are almost identical to those of PPy alone. The electrical conductivities of these composites are 1–2 orders of magnitude higher than those of PPy without MWCNTs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6449–6457, 2006  相似文献   
7.
This study describes the preparation of polyethersulfone (PES)/layered silicate nanocomposites (PLSNs) by mixing PES polymer chain into organically‐modified layered silicate in 1‐methyl‐2‐pyrrolidinone (NMP) solution. Both X‐ray diffraction data and transmission electron microscopy images of PLSNs indicate that the silicate layers were almost exfoliated and randomly distributed into the PES matrix. The mechanical and barrier properties of PLSNs show remarkable enhancement in the storage modulus and water/oxygen permeability when compared with that of neat PES matrix. Surfaces modification of PES and PLSN films with various treated times, system pressures, and radio frequency (RF) powers were performed using a mixture of oxygen (O2) and nitrogen (N2) plasmas. The topographical and physical properties of plasma‐modified PES and PLSN surfaces were investigated using scanning probe microscopy (SPM), contact‐angle measurements, and X‐ray photoelectron spectroscopy (XPS). These results indicate that the surface roughness of PLSNs with the same condition of plasma modification is lower than that of neat PES matrix and is probably due to the increase of stiffness with the presence of inorganic layered silicates in PES matrix. The surface properties of the PES and PLSNs are also changed from hydrophobic to hydrophilic. The XPS spectra suggest that the exposure of the PES and PLSNs to the plasmas led to the combination of etching reactions of polymer surface initiated by plasma and the following addition reactions of new oxygen‐ and nitrogen‐containing functional groups onto polymer surfaces to change their surface properties. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3185–3194, 2006  相似文献   
8.
This study describes the preparation of polypyrrole (PPy)/multiwalled carbon nanotube (MWNT) composites by in situ chemical oxidative polymerization. Various ratios of MWNTs, which served as hard templates, were first dispersed in aqueous solutions with the surfactant cetyltrimethylammonium bromide to form micelle/MWNT templates and overcome the difficulty of MWNTs dispersing into insoluble solutions of pyrrole monomer, and PPy was then synthesized via in situ chemical oxidative polymerization on the surface of the templates. Raman spectroscopy, Fourier transform infrared (FTIR), field‐emission scanning electron microscopy (FESEM), and high‐resolution transmission electron microscopy (HRTEM) were used to characterize the structure and morphology of the fabricated composites. Structural analysis using FESEM and HRTEM showed that the PPy/MWNT composites were core (MWNT)–shell (PPy) tubular structures. Raman and FTIR spectra of the composites were almost identical to those of PPy, supporting the idea that MWNTs served as the core in the formation of a coaxial nanostructure for the composites. The conductivities of these PPy/MWNT composites were about 150% higher than those of PPy without MWNTs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1413–1418, 2006  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号