首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3174篇
  免费   65篇
  国内免费   22篇
化学   2023篇
晶体学   21篇
力学   56篇
数学   502篇
物理学   659篇
  2021年   20篇
  2020年   21篇
  2019年   43篇
  2018年   20篇
  2017年   30篇
  2016年   54篇
  2015年   52篇
  2014年   54篇
  2013年   140篇
  2012年   159篇
  2011年   191篇
  2010年   98篇
  2009年   94篇
  2008年   175篇
  2007年   153篇
  2006年   179篇
  2005年   167篇
  2004年   150篇
  2003年   110篇
  2002年   104篇
  2001年   49篇
  2000年   49篇
  1999年   33篇
  1998年   29篇
  1997年   41篇
  1996年   39篇
  1995年   46篇
  1994年   48篇
  1993年   38篇
  1992年   38篇
  1991年   28篇
  1990年   31篇
  1989年   46篇
  1988年   34篇
  1987年   25篇
  1986年   28篇
  1985年   30篇
  1984年   33篇
  1983年   35篇
  1982年   38篇
  1981年   41篇
  1980年   40篇
  1979年   34篇
  1978年   38篇
  1977年   49篇
  1976年   34篇
  1975年   29篇
  1974年   37篇
  1973年   41篇
  1972年   14篇
排序方式: 共有3261条查询结果,搜索用时 250 毫秒
1.
There have been rapid advances in the development of new materials for use in electrode–tissue interfacing. The development of conducting polymers, conducting hydrogels, carbon nanotubes, graphene and other conducting materials has provided a rich landscape for controlling charge transfer at the electrode–tissue interface and hence to monitor and manipulate cell behaviour. These materials have been used in tissue-engineered constructs to direct and control cell proliferation, growth and differentiation. However, their translation to clinical devices has been less successful. In this review, the use of electroanalytical techniques to develop an understanding of charge transfer at the electrode–tissue interface is discussed. In particular, the impact of solution and electrode conditions on charge injection capacity is demonstrated. The importance of standardised testing methods and the correlation of electrochemical and electrophysiological performance show the limitations of empirical studies and help define key electrode properties for clinical devices. The development of a sound theoretical basis for charge transfer at this increasingly important interface is being advocated to improve clinical outcomes and device lifetime and reduce power usage.  相似文献   
2.
Precise oligomeric materials constitute a growing area of research with implications for various applications as well as fundamental studies. Notably, this field of science which can be termed macro-organic chemistry, draws inspiration from both traditional polymer chemistry and organic synthesis, combining the molecular precision of organic chemistry with the materials properties of macromolecules. Discrete oligomers enable access to unprecedented materials properties, for example, in self-assembled structures, crystallization, or optical properties. The degree of control over oligomer structures resembles many biological systems and enables the design of materials with tailored properties and the development of fundamental structure–property relationships. This Review highlights recent developments in macro-organic chemistry from synthetic concepts to materials properties, with a focus on self-assembly and molecular recognition. Finally, an outlook for future research directions is provided.  相似文献   
3.
4.
Structurally unique halimanes EBC-232 and EBC-323, isolated from the Australian rainforest plant Croton insularis, proved considerably difficult to elucidate. The two diastereomers, which consist an unusual oxo-6,7-spiro ring system fused to a dihydrofuran, were solved by unification and consultation of five in silico NMR elucidation and prediction methods [i.e., ACDLabs, olefin strain energy (OSE), DP4, DU8+ and TD DFT CD]. Structure elucidation challenges of this nature are prime test case examples for empowering future AI learning in structure elucidation.  相似文献   
5.
Reported here is the synthesis and self-assembly characterization of [n.n]paracyclophanes ( [n.n]pCps , n=2, 3) equipped with anilide hydrogen bonding units. These molecules differ from previous self-assembling [n.n]paracyclophanes ( [n.n]pCps ) in the connectivity of their amide hydrogen bonding units (C-centered/carboxamide vs. N-centered/anilide). This subtle change results in a ≈30-fold increase in the elongation constant for the [2.2]pCp -4,7,12,15-tetraanilide ( [2.2]pCpNTA ) compared to previously reported [2.2]pCp -4,7,12,15-tetracarboxamide ( [2.2]pCpTA ), and a ≈300-fold increase in the elongation constant for the [3.3]pCp -5,8,14,17-tetraanilide ( [3.3]pCpNTA ) compared to previously reported [3.3]pCp -5,8,14,17-tetracarboxamide ( [3.3]pCpTA ). The [n.n]pCpNTA monomers also represent the reversal of a previously reported trend in solution-phase assembly strength when comparing [2.2]pCpTA and [3.3]pCpTA monomers. The origins of the assembly differences are geometric changes in the association between [n.n]pCpNTA monomers—revealed by computations and X-ray crystallography—resulting in a more favorable slipped stacking of the intermolecular π-surfaces ( [n.n]pCpNTA vs. [n.n]pCpTA ), and a more complementary H-bonding geometry ( [3.3]pCpNTA vs. [2.2]pCpNTA ).  相似文献   
6.
Given a graph F, a hypergraph is a Berge- F if it can be obtained by expanding each edge in F to a hyperedge containing it. A hypergraph H is Berge-F-saturated if H does not contain a subhypergraph that is a Berge-F, but for any edge eE(H¯), H+e does. The k-uniform saturation number of Berge-F is the minimum number of edges in a k-uniform Berge-F-saturated hypergraph on n vertices. For k=2 this definition coincides with the classical definition of saturation for graphs. In this paper we study the saturation numbers for Berge triangles, paths, cycles, stars and matchings in k-uniform hypergraphs.  相似文献   
7.
8.
9.
A collaborative study on the robustness and portability of a capillary electrophoresis‐mass spectrometry method for peptide mapping was performed by an international team, consisting of 13 independent laboratories from academia and industry. All participants used the same batch of samples, reagents and coated capillaries to run their assays, whereas they utilized the capillary electrophoresis‐mass spectrometry equipment available in their laboratories. The equipment used varied in model, type and instrument manufacturer. Furthermore, different types of sheath‐flow capillary electrophoresis–mass spectrometry interfaces were used. Migration time, peak height and peak area of ten representative target peptides of trypsin‐digested bovine serum albumin were determined by every laboratory on two consecutive days. The data were critically evaluated to identify outliers and final values for means, repeatability (precision within a laboratory) and reproducibility (precision between laboratories) were established. For relative migration time the repeatability was between 0.05 and 0.18% RSD and the reproducibility between 0.14 and 1.3% RSD. For relative peak area repeatability and reproducibility values obtained were 3–12 and 9–29% RSD, respectively. These results demonstrate that capillary electrophoresis‐mass spectrometry is robust enough to allow a method transfer across multiple laboratories and should promote a more widespread use of peptide mapping and other capillary electrophoresis‐mass spectrometry applications in biopharmaceutical analysis and related fields.  相似文献   
10.
Rotationally inelastic collisions of NO(X) with Ar are investigated in unprecedented detail using state-to-state, crossed molecular beam experiments. The NO(X) molecules are selected in the Ω = 0.5, j = 0.5, f state and then oriented such that either the ‘N’ or ‘O’ end of the molecule is directed towards the incoming Ar atom. Velocity map ion imaging is then used to probe the scattered NO molecules in well-defined quantum states. We show that the fully quantum state-resolved differential steric asymmetry, which quantifies how the relative efficiency for scattering off the ‘O’ and the ‘N’ ends of the molecule varies with scattering angle, is strongly affected by quantum interference. Significant changes in both integral and differential cross sections are found depending on whether collisions occur with the N or O ends of the molecule. The results are well accounted for by rigorous quantum mechanical calculations, in contrast to both classical trajectory calculations and more simplistic models that provide, at best, an incomplete picture of the dynamics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号