首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2062148篇
  免费   103097篇
  国内免费   91277篇
化学   1207788篇
晶体学   21516篇
力学   101510篇
综合类   9775篇
数学   299862篇
物理学   616071篇
  2022年   19936篇
  2021年   30287篇
  2020年   36633篇
  2019年   38503篇
  2018年   38941篇
  2017年   39557篇
  2016年   52889篇
  2015年   43024篇
  2014年   59530篇
  2013年   117748篇
  2012年   108146篇
  2011年   123576篇
  2010年   87231篇
  2009年   86129篇
  2008年   110357篇
  2007年   105856篇
  2006年   99581篇
  2005年   87579篇
  2004年   74379篇
  2003年   62136篇
  2002年   54484篇
  2001年   47411篇
  2000年   46491篇
  1999年   31929篇
  1998年   24848篇
  1997年   25242篇
  1996年   28189篇
  1995年   26855篇
  1994年   27816篇
  1993年   27134篇
  1992年   27116篇
  1991年   22629篇
  1990年   20996篇
  1989年   20271篇
  1988年   18791篇
  1987年   18301篇
  1986年   17514篇
  1985年   23729篇
  1984年   22313篇
  1983年   17999篇
  1982年   19145篇
  1981年   18929篇
  1980年   17731篇
  1979年   18399篇
  1978年   18660篇
  1977年   18253篇
  1976年   17828篇
  1975年   16851篇
  1974年   16529篇
  1973年   16710篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
建立了碰撞池-电感耦合等离子体质谱法测定芝麻中痕量的锗元素(germanium , Ge)。采用微波消解,碰撞池(KED模式)-电感耦合等离子体质谱检测,在线引入内标元素铑(Rh),同时消解液中加入3%正戊醇增敏。结果 3 % 正戊醇可使74Ge的上机检测信号强度提高2.85倍,74Ge校正曲线线性相关系数为1.00000,检出限为0.0555 μg/kg,加标回收率为92.0%~106%,相对标准偏差(relative standard deviation, RSD%)为2.6%~4.3%。采用建立的方法测定7种国家标准物质,检测结果均在认定值范围内,RSD%为2.5%~8.8%。结论 该方法灵敏度高、准确,可实现批量检测,适用于芝麻中痕量锗的检测。  相似文献   
2.
The increasing application of positron emission tomography (PET) in nuclear medicine has stimulated the extensive development of a multitude of novel and versatile techniques to introduce fluorine-18, especially for the radiolabelling of biologically or pharmacologically active molecules. Taking into consideration that the introduction of fluorine-18 (t1/2=109.8 min) mostly proceeds under harsh conditions, radiolabelling of such molecules represents a challenge and is of enormous interest. Ideally, it should proceed in a regioselective manner under mild physiological conditions, in an acceptable time span, with high yields and high specific activities. Special attention has been drawn to 2-fluoroethyl and 3-fluoropropyl groups, which are often the active sites of radiofluorinated compounds. Precursors containing an ammonium leaving group – such as a strained azetidinium or aziridinium moiety – can help to overcome these obstacles leading to a convenient and mild introduction of [18F]fluoride with high radiochemical yields.  相似文献   
3.
4.
According to the Food and Agriculture Organization of the United Nations, approximately 1.3 billion tons of food is wasted each year, equivalent to approximately one-third of world production. Agri-food wastes are the source of proteins, carbohydrates, lipids, and other essential minerals that have been exploited for value-added products by the development of biorefineries and sustainable business as important elements of circular economies. The innovation and materialization of these types of processes, including the use of disruptive technologies on microbial bioconversion and enzyme technology, such as nanotechnology, metabolic engineering, and multi-omics platforms, increase the perspectives on the waste valorization process. Lignocellulolytic enzymes, pectinases, and proteases are mainly used as catalyzers on agri-food waste treatment, and their production in house might be the trend in near future for agro-industrial countries. Another way to transform the agri-food wastes is via aerobic or anaerobic microbial process from fungal or bacterial cultures; these processes are the key to produce waste enzymes.  相似文献   
5.
Cascade reactions have been widely recognized to cut costs, decrease solvent usage, and reduce cycle times in chemical processes. Recently, biocatalytic cascades have altered how we design synthetic routes to complex molecules to achieve sustainable commercial processes for pharmaceutical, agricultural, and fine chemical industries. With advancements in protein engineering and an increase in the number of enzyme classes available to chemists, industrial and academic groups alike have endeavored to expand the scope of biocatalysis from single reactions to multi-enzyme cascades to rapidly build complex molecular structures. Recent reports have drawn inspiration from biosynthetic pathways and have applied engineered enzymes to in vitro enzymatic cascades. Furthermore, combining transition-metal catalysis and enzymes in one-pot chemoenzymatic cascades likewise serves to broaden the scope of biocatalysis, enabling traditional chemical reactions to be performed under mild aqueous conditions. In this article, we review recent biocatalytic and chemoenzymatic cascades from 2019 to 2021.  相似文献   
6.
Different strategies for the preparation of efficient and robust immobilized biocatalysts are here reviewed. Different physico-chemical approaches are discussed.i.- The stabilization of enzyme by any kind of immobilization on pre-existing porous supports.ii.- The stabilization of enzymes by multipoint covalent attachment on support surfaces.iii.- Additional stabilization of immobilized-stabilized enzyme by physical or chemical modification with polymers.These three strategies can be easily developed when enzymes are immobilized in pre-existing porous supports. In addition to that, these immobilized-stabilized derivatives are optimal to develop enzyme reaction engineering and reactor engineering. Stabilizations ranging between 1000 and 100,000 folds regarding diluted soluble enzymes are here reported.  相似文献   
7.
Hydrothermal synthesis using graphene oxide (GO) as a precursor has been used to produce luminescent graphene quantum dots (GQDs). However, such a method usually requires many reagents and multistep pretreatments, while can give rise to GQDs with low quantum yield (QY). Here, we investigated the concentration, the temperature of synthesis, and the pH of the GO solution used in the hydrothermal method through factorial design experiments aiming to optimize the QY of GQDs to reach a better control of their luminescent properties. The best synthesis condition (2 mg/mL, 175 °C, and pH = 8.0) yielded GQDs with a relatively high QY (8.9%) without the need of using laborious steps or dopants. GQDs synthesized under different conditions were characterized to understand the role of each synthesis parameter in the materials' structure and luminescence properties. It was found that the control of the synthesis parameters enables the tailoring of the amount of specific oxygen functionalities onto the surface of the GQDs. By changing the synthesis' conditions, it was possible to prioritize the production of GQDs with more hydroxyl or carboxyl groups, which influence their luminescent properties. The as-developed GQDs with tailored composition were used as luminescent probes to detect Fe3+. The lowest limit of detection (0.136 μM) was achieved using GQDs with higher amounts of carboxylic groups, while wider linear range was obtained by GQDs with superior QY. Thus, our findings contribute to rationally produce GQDs with tailored properties for varied applications by simply adjusting the synthesis conditions and suggest a pathway to understand the mechanism of detection of GQDs-based optical sensors.  相似文献   
8.
Employing nanocrystals (NCs) as building blocks of porous aerogel network structures allows the conversion of NC materials into macroscopic solid structures while conserving their unique nanoscopic properties. Understanding the interplay of the network formation and its influence on these properties like size-dependent emission is a key to apply techniques for the fabrication of novel nanocrystal aerogels. In this work, CdSe/CdS dot/rod NCs possessing two different CdSe core sizes were synthesized and converted into porous aerogel network structures. Temperature-dependent steady-state and time-resolved photoluminescence measurements were performed to expand the understanding of the optical and electronic properties of these network structures generated from these two different building blocks and correlate their optical with the structural properties. These investigations reveal the influence of network formation and aerogel production on the network-forming nanocrystals. Based on the two investigated NC building blocks and their aerogel networks, mixed network structures with various ratios of the two building blocks were produced and likewise optically characterized. Since the different building blocks show diverse optical response, this technique presents a straightforward way to color-tune the resulting networks simply by choosing the building block ratio in connection with their quantum yield.  相似文献   
9.
Dispersive liquid-liquid microextraction is one of the most widely used microextraction techniques currently in the analytical chemistry field, mainly due to its simplicity and rapidity. The operational mode of this approach has been constantly changing since its introduction, adapting to new trends and applications. Most of these changes are related to the nature of the solvent employed for the microextraction. From the classical halogenated solvents (e.g., chloroform or dichloromethane), different alternatives have been proposed in order to obtain safer and non-pollutants microextraction applications. In this sense, low-density solvents, such as alkanols, switchable hydrophobicity solvents, and ionic liquids were the first and most popular replacements for halogenated solvents, which provided similar or better results than these classical dispersive liquid-liquid microextraction solvents. However, despite the good performances obtained with low-density solvents and ionic liquids, researchers have continued investigating in order to obtain even greener solvents for dispersive liquid-liquid microextraction. For that reason, in this review, the evolution over the last five years of the three types of solvents already mentioned and two of the most promising solvent alternatives (i.e., deep eutectic solvents and supramolecular solvents), have been studied in detail with the purpose of discussing which one provides the greenest alternative.  相似文献   
10.
Meropenem, a representative β-lactam antibiotic, is widely used to treat complicated and serious infections. Therefore, it is of great significance to monitor the plasma drug concentration for individualized antimicrobial therapy. This study first describes the development and validation of high-performance liquid chromatography–tandem mass spectrometry cubed method for monitoring meropenem in human plasma. Protein precipitation with methanol and a chromatographic analysis time of 7 min make this method simple and of high throughput. Meropenem was extracted from human plasma with recoveries >94.1%. Calibration curves were linear (R> 0.995) in the concentration range of 0.5–50 μg/mL. Overall accuracy and precision did not exceed 8.0% as well as no significant matrix effect was observed. The novelty of this method is that the triple-stage mass spectrometry technology improves the selectivity and sensitivity. A comparison of the presented method and traditional liquid chromatography–tandem mass spectrometry method was assessed in 44 patients treated with meropenem and Passing–Bablok regression coefficients and Bland–Altman plots showed that no significant difference between the two methods. So the triple-stage mass spectrometry method developed in this study is appropriate and practical for the monitor of meropenem in the daily clinical laboratory practice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号