首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
  国内免费   3篇
化学   2篇
物理学   3篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
以[Ca24Al28O64]4+·4O-(C12A7-O-)为催化剂,在流动反应器中研究了苯羟基化合成苯酚的转化率以及苯酚的选择性.苯的转化率随反应温度增加而增加,苯酚的选择性与温度及反应物的组成有关.此外还通过XRD、EPR和FT-IR对催化剂的结构,表面及内部物种进行了考察.结果表明,C12A7-O-的电正性骨架结构在反应前后几乎没有任何差别,样品内部有部分O-和O2-在反应后转化为OH-.中性物种及负离子中间体分别由Q-MS和TOF-MS所检测.活性的O-和OH-被认为在苯酚形成过程中起了重要作用.  相似文献   
2.
C12A7-Mg催化剂水蒸汽重整生物油、石脑油和CH4制氢   总被引:6,自引:0,他引:6  
利用自制的C12A7-Mg催化剂,研究了催化水蒸汽重整生物油、石脑油和CH4制备氧气的性能,以及催化剂寿命,并用X射线光电子能谱对催化剂进行了表征.温度测试范围为250-850℃.对于催化水蒸汽重整生物油反应,在750℃时,氢气产率最大达到80%,碳的转化率接近95%.在相同的反应温度下,催化水蒸汽重整石脑油和CH4的氢气产率和碳的转化率要低于重整生物油反应.催化剂的失活主要是由于重整过程中的积碳.  相似文献   
3.
以生物油基合成气的模拟气H2/CO/CO2/N2(62/8/25/5,体积比)为原料,采用固定床反应器,在1.5 MPa、300 o C、W=F=12.5 gcath/mol的条件下,研究了钾助剂及钾的添加量对沉淀铁催化剂费托合成催化活性及产物选择性的影响.生物油基合成气是通过生物油催化蒸汽重整得到.研究发现,钾的添加促进了沉淀铁催化剂费-托反应及逆水气变换反应的活性.此外,钾的加入增加了碳氢产物的平均分子量(链长).结果表明,随着钾助剂含量的增加,甲烷的选择性降低,液相碳氢产物(C5+)的选择性增加.通过多种方法,例如X射线衍射、X射线光电子能谱及比表面等对不同钾含量的费托合成催化剂进行了表征.通过费托合成实验和催化剂的表征,选出100Fe/6Cu/16Al/6K(质量比)作为生物油基合成气费-托合成最适宜的催化剂.  相似文献   
4.
The reforming of anisole (as model compound of bio-oil) was performed over the NiCuZn-Al2O3 catalyst, using a recently-developed electrochemical catalytic reforming (ECR). The influence of the current on the anisole reforming in the ECR process has been investigated. It was observed that anisole reforming was significantly enhanced by the current approached over the catalyst in the electrochemical catalytic process, which was due to the non-uniform temperature distribution in the catalytic bed and the role of the thermal electrons orig-inating from the electrified wire. The maximum hydrogen yield of 88.7% with a carbon conversion of 98.3% was obtained through the ECR reforming of anisole at 700 oC and 4 A. X-ray diffraction was employed to characterize catalyst features and their alterations in the anisole reforming. The apparent activation energy for the anisole reforming is calculated as 99.54 kJ/mol, which is higher than ethanol, acetic acid, and light fraction of bio-oil. It should owe to different physical and chemical properties and reforming mechanism for different hydrocarbons.  相似文献   
5.
Hydrogen production by catalytic steam reforming of the bio-oil, naphtha, and CH4 was investigated over anovel metal-doped catalyst of (Ca24Al28O64)4+¢4O-/Mg (C12A7-Mg). The catalytic steam reforming wasinvestigated from 250 to 850 ±C in the ˉxed-bed continuous °ow reactor. For the reforming of bio-oil, theyield of hydrogen of 80% was obtained at 750 ±C, and the maximum carbon conversion is nearly close to95% under the optimum steam reforming condition. For the reforming of naphtha and CH4, the hydrogenyield and carbon conversion are lower than that of bio-oil at the same temperature. The characteristics ofcatalyst were also investigated by XPS. The catalyst deactivation was mainly caused by the deposition ofcarbon in the catalytic steam reforming process.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号