首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   9篇
  国内免费   8篇
化学   1篇
物理学   17篇
  2022年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
测量了在15200~19000 cm-1的超声射流冷却的CoS自由基的激光诱导荧光激发谱. 观测到[15.58]4Δ7/2X4Δ7/2, [16.02]4Δ7/2X4Δ7/2, [16.50]4Δ7/2X4Δ7/2, [17.80]4П5/2X4Δ7/2和[18.00]4Δ7/2X4Δ7/2五个电子跃迁序列. 此外,还测量到了大多数观察的振动带的寿命. 并讨论了这些新的电子态的电子构型.  相似文献   
2.
利用频域信息重构的散焦宽场成像测量了Poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole](PFO-DBT)共轭聚合物单分子发色团的吸收与发射特性及其动态演变过程.通过调制用于激发共轭聚合物单分子的超短脉冲对的相对相位,对单分子荧光进行傅里叶变换的频域测量,跟踪发色团吸收偶极取向变化;通过测量散焦荧光成像光斑探测发色团发射偶极取向变化.研究发现, PFO-DBT共轭聚合物单分子发色团存在吸收和发射偶极取向均保持不变、其中之一变化以及两者同时变化三种情况.这种对共轭聚合物单分子发色团吸收和发射偶极取向演化过程的实时测量可用于分析共轭聚合物构象变化及其对能量转移过程的影响.  相似文献   
3.
胶体半导体量子点具有宽带吸收、窄带发射、发光量子产率高、发射波长连续可调等优点,是制备发光二极管、太阳能电池、探测器、激光器等光电器件的优质材料.单量子点光谱能够消除系综平均效应,可以在单粒子水平上获取量子点材料的结构和动力学信息及与其他材料间的电荷、能量转移动力学等.相关研究结果能够指引量子点材料的设计和为量子点的相关应用提供机理基础.另外基于单量子点可以开展纳米尺度上光与物质的相互作用研究,制备单光子源和纠缠光子源等.本文综述了单量子点光谱与激子动力学近期的相关研究进展,主要包括单量子点的光致发光闪烁特性和调控方式、单激子和多激子动力学研究及双激子辐射特性的调控等.最后简要地讨论了单量子点光谱未来可能的发展趋势.  相似文献   
4.
采用激光诱导荧光技术在12900-15000 cm-1能量范围内研究了超声射流冷却条件下的氯化镍光谱. 通过分析,6个具有转动结构的振转带被归属为跃迁序列. 相关的转动常数、同位素位移以及(平衡)分子常数被确定. 此外, 还测量了这些振转带的寿命.  相似文献   
5.
氧化石墨烯因其宽带可调谐的荧光发射特性已被广泛应用于荧光成像、金属离子高灵敏检测和光电器件的制备.相比于荧光强度,氧化石墨烯荧光寿命不受材料厚度和激发功率的影响,具有更为稳定和均一的特性.本文研究了在激光还原过程中氧化石墨烯荧光寿命逐渐减小的变化行为,发现了长寿命sp~3杂化结构向短寿命sp~2杂化结构的转变.通过精确控制还原时间,结合激光直写技术,在单层氧化石墨烯薄膜上实现了二维码、条形码、图形和数字等微纳图形的制备,还在多层氧化石墨烯薄膜结构上获得了多寿命多层微纳图形.这种微纳图形的制备具有灵活无掩膜、高对比和多模式的特点,可用于高密度光学存储、信息显示和光电器件制备等诸多领域.  相似文献   
6.
利用基于宽场显微光学系统的单分子散焦成像技术测量了不同构象poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole](PFO-DBT)共轭聚合物单分子的光物理与动力学特性.通过分析共轭聚合物单分子的荧光轨迹和对应的发射偶极取向变化识别共轭聚合物单分子发光单元,发现延伸构象下的单分子呈现多发色团发光特性,而折叠构象下的单分子保持高效链间能量转移,呈现单个发色团发光特性.共轭聚合物单分子构象对能量转移效率的影响可用于研究基于共轭聚合物的光电器件和分子器件.  相似文献   
7.
王早  张国峰  李斌  陈瑞云  秦成兵  肖连团  贾锁堂 《物理学报》2015,64(24):247803-247803
利用N型半导体纳米材料氧化铟锡(ITO)作为单CdSe/ZnS量子点的基质来抑制单量子点的荧光闪烁特性. 实验采用激光扫描共聚焦显微成像系统测量了单量子点荧光的亮、暗态持续时间的概率密度分布的指数截止的幂律特性, 并与直接吸附在SiO2玻片上的单CdSe/ZnS量子点的荧光特性进行比较. 研究发现处于ITO中的单量子点比SiO2玻片上的单量子点荧光亮态持续时间提高两个数量级, 掺杂于ITO中的单量子点的荧光寿命约减小为SiO2玻片上的单量子点的荧光寿命的41%, 并且寿命分布宽度变小50%.  相似文献   
8.
Tongyao Zhang 《中国物理 B》2022,31(5):58504-058504
Thermionic emission is a tunneling phenomenon, which depicts that electrons on the surface of a conductor can be pulled out into the vacuum when they are subjected to high electrical tensions while being heated hot enough to overtake their work functions. This principle has led to the great success of the so-called vacuum tubes in the early 20th century. To date, major challenges still remain in the miniaturization of a vacuum channel transistor for on-chip integration in modern solid-state integrated circuits. Here, by introducing nano-sized vacuum gaps (~ 200 nm) in a van der Waals heterostructure, we successfully fabricated a one-dimensional (1D) edge-to-edge thermionic emission vacuum tube using graphene as the filament. With the increasing collector voltage, the emitted current exhibits a typical rectifying behavior, with the maximum emission current reaching 200 pA and an ON-OFF ratio of 103. In addition, it is found that the maximum emission current is proportional to the number of the layers of graphene. Our results expand the research of nano-sized vacuum tubes to an unexplored physical limit of 1D edge-to-edge emission, and hold great promise for future nano-electronic systems based on it.  相似文献   
9.
使用离子速度成像技术研究了新戊基溴和叔戊基溴的234 nm光解动力学. 由于它们具有比正戊基溴更多的支链,因此不仅可以观测到C-Br键的直接断裂,还分别存在一个和两个由于弯曲振动模被激发引起的慢速解离通道,母体分子在C-Br键断裂之前就已经有大量的可资用能被用于激发弯曲振动模. 这些充分说明了新戊基溴和叔戊基溴在234 nm光解中C-Br键的断裂是由于伸缩振动和弯曲振动的耦合而产生的,而不单纯归咎于伸缩振动引起.  相似文献   
10.
本文开展了基于单光子调制频谱测量量子点荧光寿命动力学特性的研究.在脉冲激光激发下,对探测到的量子点单光子荧光信号进行频谱分析以获得荧光调制频谱,研究发现特征频谱信号幅值与荧光寿命之间存在确定的非线性对应关系.这种单光子调制频谱方法能有效消除背景噪声和单光子探测器暗计数的影响,用于分析量子点荧光寿命动力学特性时在准确度以及时间分辨率方面都较目前普遍采用的荧光衰减曲线寿命拟合方法呈现出明显优势:当涨落误差为5%时,寿命测量准确度提高了一个数量级;当涨落误差和偏离误差均为5%时,对动力学测量效率以及时间分辨率提高了四倍以上.因此单光子调制频谱可以作为获取量子点在短时间尺度内激发态动力学信息的一种有效技术手段.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号