首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   4篇
  国内免费   3篇
化学   2篇
晶体学   4篇
物理学   4篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2014年   1篇
  2011年   1篇
  2008年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
为了降低PLZT铁电薄膜的结晶温度,使用溶胶-凝胶法配合紫外光辐照的光化学工艺,在单晶硅基板上低温制备了PLZT铁电薄膜.经过紫外辐照过的凝胶膜可以在400℃促使PLZT获得良好的铁电性能,剩余极化强度为12.3μC/cm2.紫外辐照过的薄膜可以在低温下有效地分解金属醇盐,形成活性金属氧化物,保证材料低温结晶.辐照过程中产生的臭氧可以带走薄膜中的残炭,使得薄膜具有良好的铁电性能.低温制备的PLZT铁电薄膜获得了稳定的光电流和较好的光电转化效率.  相似文献   
2.
我们把Flory Huggins模型(association models)推广应用到暴露于水蒸气中的两性离子聚合物刷体系,考虑两性离子聚合物-水氢键(P-W氢键)与两性离子聚合物链间两亲离子单体-单体键合(zwitterions complex)、形成氢键与两性离子聚合物链构象的耦合特性,研究水蒸气诱导的两性离子聚合物刷构象转变的机理和相行为.研究发现,随着水蒸气浓度的增加,P-W氢键效应会使得两性离子聚合物刷溶胀;两亲离子单体-单体键合效应会导致水分子将会被排出刷外,并会导致两性离子聚合物刷塌缩.通过分析两性离子聚合物刷的相图发现,P-W氢键效应在决定两性离子聚合物刷的相行为中起到主导作用,在水蒸气增加过程中两性离子聚合物刷将会单调溶胀.基于本文的分析,可以预言,由于P-W氢键效应,两性离子聚合物刷可以吸附水蒸气,当两性离子聚合物链接枝密度足够高时,两性离子聚合物刷内的水分子将会被排出,并会形成两亲离子单体-单体键合连接的凝胶状结构.  相似文献   
3.
我们把Flory-Huggins模型(association models)推广应用到暴露于水蒸气中的聚电解质刷体系,考虑聚电解质-水氢键(P-W氢键)与水-水氢键(W-W氢键)、形成氢键与聚电解质链构象的耦合特性,研究水蒸气诱导的聚电解质刷构象转变的机理.研究发现,当P-W氢键效应起主导作用时,随着水蒸气浓度的增加,聚电解质刷会单调溶胀;P-W和W-W两种氢键效应,则会导致随着水蒸气浓度的增加,聚电解质刷的构象首先塌缩,然后开始溶胀的反常转变行为.基于本文的分析,可以预言,由于P-W氢键效应,聚电解质刷可以吸附水蒸气,吸附能力随聚电解质链长的增加而增强;当聚电解质链接枝密度足够高时,由于P-W和W-W两种氢键效应,增加体系中的水蒸气,会在聚电解质刷体系中形成由P-W氢键和W-W氢键交错链接的三维网络状凝胶结构.  相似文献   
4.
通过自组装辅助的一步法制备了具有温度和pH双重响应性的荧光纳米凝胶(FNG).首先设计制备了一种水溶性含双键的荧光单体5-丙烯酰胺荧光素(5-AAF),在水溶性纤维素醚——羟丙基纤维素(HPC)主链上引发5-AAF的接枝共聚,同时由于5-AAF的疏水作用力诱导共聚物发生自组装,并通过双官能团交联剂亚甲基二丙烯酰胺(MBA)的加入使自组装纳米聚集体交联,从而一步制得具有环境响应性的FNG,该过程在水相中进行,具有高效、"绿色"的优点.研究结果表明,改变合成过程中HPC的分子量可调控所得FNG的环境响应性.对FNG环境响应性的研究表明,FNG链段上的亲疏水基团及与水分子间的氢键作用是影响凝胶温度响应性的主要因素.此外,FNG的荧光在中性及碱性溶液中显著加强,在酸性溶液中迅速猝灭.由于FNG的荧光信号对温度和pH的显著敏感性,且具有较低的细胞毒性,因此在荧光标记生物检测及生物微环境的温度/pH检测等领域具有广泛的应用前景.  相似文献   
5.
利用微波等离子体化学气相沉积法,在覆盖金属钛层的陶瓷衬底上制备出类球状微米金刚石聚晶膜,后对膜的表面进行氮离子的注入.通过扫描电子显微镜、拉曼光谱、X射线衍射谱及二级结构场发射测试,对膜进行了注入前后的分析.氮离子注入后场致电子发射的效果变强,这可能是氮离子的注入增加了类球状微米金刚石聚晶膜表面的缺陷度,从而增加了价带和导带间的缺陷能级,使电子更容易跃迁到高能级上,提高了场致电子的发射效果.  相似文献   
6.
使用溶胶-凝胶法在石英玻璃基片上制备了PZT铁电薄膜,通过控制热处理工艺,制备出致密且均匀的PZT铁电薄膜.通过获得高的剩余极化强度,提高PZT膜层的内建电场,从而提高PZT铁电薄膜的光电转化效率.经过500℃高温热处理1h后不仅提高了PZT的结晶度,同时提高了PZT的致密度,PZT薄膜经过电场的极化,可以获得剩余极化强度为17 μc/cm2.紫外光照射下的光电流稳定.  相似文献   
7.
以高纯超细粉体为原料,采用热压(HP)结合热等静压(HIP)法制备了透明MgO·nAl2O3(n=0.98、1、1.1、1.2、1.3)尖晶石陶瓷。雾在透明陶瓷中十分常见,严重云雾的存在大幅降低透光率,影响陶瓷的力学性能。为了获得光学质量优异、力学性能适宜的MgO·nAl2O3尖晶石,对尖晶石中的雾度进行了测量,并对雾的形成进行了分析。通过扫描电镜(SEM)发现,在雾较重的富镁半透明样品中,晶界处有许多圆形晶粒。用能谱仪(EDS)测定了圆形晶粒的组成为n=0.41。第二相MgO由于镁过量而易析出,严重降低了晶界强度,影响陶瓷的力学性能。MgO相与尖晶石相具有不同的折射率,会引起严重的光散射,降低样品的透过率。在另一试样中,测得晶界处颗粒组成为n=1.33,测得该富铝试样的抗弯强度远远高于n=1试样和富镁试样。  相似文献   
8.
镁铝尖晶石(MgAl2O4)作为先进的透明陶瓷材料,具有透过波段宽、透过率高、各向同性,高熔点、高硬度、高强度、高电阻率、高热导率、高抗热震,耐腐蚀和耐高温等优异性能,可广泛应用于红外制导窗口、高马赫航空器的整流罩、透明装甲和极端环境下的光电设备窗口等关系国防安全与高性能关键设备领域。本文简要介绍了镁铝尖晶石透明陶瓷的基本性能和国内外研制情况,重点介绍中材人工晶体研究院有限公司三十余年在镁铝尖晶石高纯粉体合成、镁铝尖晶石透明陶瓷成型烧结工艺和性能研究及应用开发方面所做工作,分析了材料研制中遇到的困难与在应用开发过程中面临的竞争和挑战,思考材料的研究方向、方法,并对其应用和发展予以展望。  相似文献   
9.
利用自制的催化剂C,通过甲基丙烯酸烯丙酯和二甲基氯硅烷的硅氢加成反应制备了γ-(甲基丙烯酰氧基)丙基二甲基氯硅烷。与经典的Speier催化剂相比,自制催化剂具有更高的催化活性,显著地降低了反应温度,且缩短了反应时间,同时考察了反应条件对催化剂活性和反应结果的影响。  相似文献   
10.
Can Li 《中国物理 B》2022,31(11):118802-118802
The electron transport layer (ETL) plays an important role on the performance and stability of perovskite solar cells (PSCs). Developing double ETL is a promising strategy to take the advantages of different ETL materials and avoid their drawbacks. Here, an ultrathin SnO2 layer of ~ 5 nm deposited by atomic layer deposit (ALD) was used to construct a TiO2/SnO2 double ETL, improving the power conversion efficiency (PCE) from 18.02% to 21.13%. The ultrathin SnO2 layer enhances the electrical conductivity of the double layer ETLs and improves band alignment at the ETL/perovskite interface, promoting charge extraction and transfer. The ultrathin SnO2 layer also passivates the ETL/perovskite interface, suppressing nonradiative recombination. The double ETL achieves outstanding stability compared with PSCs with TiO2 only ETL. The PSCs with double ETL retains 85% of its initial PCE after 900 hours illumination. Our work demonstrates the prospects of using ultrathin metal oxide to construct double ETL for high-performance PSCs.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号