首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8150篇
  免费   1515篇
  国内免费   2205篇
化学   3873篇
晶体学   33篇
力学   1079篇
综合类   58篇
数学   2313篇
物理学   4514篇
  2023年   88篇
  2022年   141篇
  2021年   128篇
  2020年   136篇
  2019年   101篇
  2018年   119篇
  2016年   114篇
  2015年   154篇
  2014年   322篇
  2013年   258篇
  2012年   402篇
  2011年   386篇
  2010年   364篇
  2009年   284篇
  2008年   209篇
  2007年   459篇
  2006年   438篇
  2005年   542篇
  2004年   514篇
  2003年   342篇
  2002年   422篇
  2001年   522篇
  2000年   374篇
  1999年   442篇
  1998年   208篇
  1997年   145篇
  1996年   186篇
  1995年   236篇
  1994年   206篇
  1993年   206篇
  1992年   200篇
  1991年   151篇
  1990年   188篇
  1989年   179篇
  1988年   215篇
  1987年   225篇
  1986年   189篇
  1985年   253篇
  1984年   167篇
  1983年   113篇
  1982年   106篇
  1981年   87篇
  1975年   114篇
  1960年   73篇
  1959年   83篇
  1958年   126篇
  1957年   124篇
  1956年   109篇
  1955年   118篇
  1954年   92篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
Carbyne is an infinitely long linear chain of carbon atoms with sp1 hybridization and the truly one-dimensional allotrope of carbon. While obtaining freestanding carbyne is still an open challenge, the study of confined carbyne, linear chains of carbon encapsulated in carbon nanotubes, provides a pathway to explore carbyne and its remarkable properties in a well-defined environment. In this review, we discuss the basics and recent advances in studying single confined carbyne chains by Raman spectroscopy, which is their primary spectroscopic characterization method. We highlight where single carbyne chain studies are needed to advance our understanding of confined carbyne as a material system and provide an overview of the open questions that need to be addressed and of those aspects currently under debate.  相似文献   
3.
Over the last decade, numerous research efforts have been devoted to pillar[n]arenes since their debut.The popularity of pillararenes is a reflection of current research trend in supramolecular and macrocyclic chemistry in general. Among the vast applications(such as chemosensors, drug delivery, transmembrance channels, and separation) of pillararenes, their utilization in catalysis is a relatively less explored area.However, soaring attention has been paid by researchers in recent years and thi...  相似文献   
4.
Qian Dong 《中国物理 B》2022,31(3):30303-030303
Using a single-mode approximation, we carry out the entanglement measures, e.g., the negativity and von Neumann entropy when a tetrapartite generalized GHZ state is treated in a noninertial frame, but only uniform acceleration is considered for simplicity. In terms of explicit negativity calculated, we notice that the difference between the algebraic average $\pi_{4}$ and geometric average $\varPi_{4}$ is very small with the increasing accelerated observers and they are totally equal when all four qubits are accelerated simultaneously. The entanglement properties are discussed from one accelerated observer to all four accelerated observers. It is shown that the entanglement still exists even if the acceleration parameter $r$ goes to infinity. It is interesting to discover that all 1-1 tangles are equal to zero, but 1-3 and 2-2 tangles always decrease when the acceleration parameter $r$ increases. We also study the von Neumann entropy and find that it increases with the number of the accelerated observers. In addition, we find that the von Neumann entropy $S_{\text{ABCDI}}$, $S_{\text{ABCIDI}}$, $S_{\text{ABICIDI}}$ and $S_{\text{AIBICIDI}}$ always decrease with the controllable angle $\theta$, while the entropies $S_{3-3~\rm non}$, $S_{3-2~\rm non}$, $S_{3-1~\rm non}$ and $S_{3-0~\rm non}$ first increase with the angle $\theta$ and then decrease with it.  相似文献   
5.
The nanofluid and porous medium together are able to fulfill the requirement of high cooling rate in many engineering problems. So, here the impact of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium is examined. Moreover, the thermal radiation and viscous dissipation effects are considered. The problem governing partial differential equations are converted into self-similar coupled ordinary differential equations and those are numerically solved by the shooting method. The computed results can reveal many vital findings of practical importance. Firstly, dual solutions exist for decelerating unsteady flow and for accelerating unsteady and steady flows, the solution is unique. The presence of nanoparticles affects the existence of dual solution in decelerating unsteady flow only when the medium of the flow is a porous medium. But different shapes of nanoparticles are not disturbing the dual solution existence range, though it has a considerable impact on thermal conductivity of the mixture. Different shapes of nanoparticles act differently to enhance the heat transfer characteristics of the base fluid, i.e., the water here. On the other hand, the existence range of dual solutions becomes wider for a larger permeability parameter related to the porous medium. Regarding the cooling rate of the heated surface, it rises with the permeability parameter, shape factor (related to various shapes of Cu-nanoparticles), and radiation parameter. The surface drag force becomes stronger with the permeability parameter. Also, with growing values of nanoparticle volume fraction, the boundary layer thickness (BLT) increases and the thermal BLT becomes thicker with larger values of shape factor. For decelerating unsteady flow, the nanofluid velocity rises with permeability parameter in the case of upper branch solution and an opposite trend for the lower branch is witnessed. The thermal BLT is thicker with radiation parameter. Due to the existence of dual solutions, a linear stability analysis is made and it is concluded that the upper branch and unique solutions are stable solutions.  相似文献   
6.
Several p H-dependent processes and reactions take place in the human body;hence,the p H of body fluids is the best indicator of disturbed health conditions.However,accurate and real-time diagnosis of the p H of body fluids is complicated because of limited commercially available p H sensors.Hence,we aimed to prepare a flexible,transparent,disposable,userfriendly,and economic strip-based solid-state p H sensor using palladium nanoparticles(Pd NPs)/N-doped carbon(NC)composite material.The Pd NPs/NC composite material was synthesized using wool keratin(WK)as a precursor.The insitu prepared Pd NPs played a key role in the controlled switching of protein structure to the N-doped carbon skeleton withπ–πarrangement at the mesoscale level,which mimics the A–B type polymeric structure,and hence,is highly susceptible to H+ions.The optimized carbonization condition in the presence of Pd NPs showed that the material obtained using a modified Ag/Ag Cl reference electrode had the highest p H sensitivity with excellent stability and durability.The optimized p H sensor showed high specificity and selectivity with a sensitivity of 55 m V/p H unit and a relative standard deviation of 0.79%.This study is the first to synthesize Pd NPs using WK as a stabilizing and reducing agent.The applicability of the sensor was investigated for biological samples,namely,saliva and gastric juices.The proposed protocol and material have implications in solid-state chemistry,where biological material will be the best choice for the synthesis of materials with anticipated performance.  相似文献   
7.
Applied Mathematics and Mechanics - Mechanical models of residually stressed fibre-reinforced solids, which do not resist bending, have been developed in the literature. However, in some residually...  相似文献   
8.

The purpose of this investigation is to theoretically shed some light on the effect of the unsteady electroosmotic flow (EOF) of an incompressible fractional second-grade fluid with low-dense mixtures of two spherical nanoparticles, copper, and titanium. The flow of the hybrid nanofluid takes place through a vertical micro-channel. A fractional Cattaneo model with heat conduction is considered. For the DC-operated micropump, the Lorentz force is responsible for the pressure difference through the microchannel. The Debye-Hükel approximation is utilized to linearize the charge density. The semi-analytical solutions for the velocity and heat equations are obtained with the Laplace and finite Fourier sine transforms and their numerical inverses. In addition to the analytical procedures, a numerical algorithm based on the finite difference method is introduced for the given domain. A comparison between the two solutions is presented. The variations of the velocity heat transfer against the enhancements in the pertinent parameters are thoroughly investigated graphically. It is noticed that the fractional-order parameter provides a crucial memory effect on the fluid and temperature fields. The present work has theoretical implications for biofluid-based microfluidic transport systems.

  相似文献   
9.
Let R be an associative unital ring and not necessarily commutative.We analyze conditions under which every n × n matrix A over R is expressible as a sum A =E1 +…+ Es + N of (commuting) idempotent matrices Ei and a nilpotent matrix N.  相似文献   
10.
Guided waves in the multilayered one-dimensional quasi-crystal plates are,respectively,investigated in the context of the Bak and elasto-hydrodynamic models.Dispersion curves and phonon and phason displacements are calculated using the Legendre polynomial method.Wave characteristics in the context of these two models are analyzed in detail.Results show that the phonon-phason coupling effects on the first two layers are the same at low frequencies;but,they are more significant on the first layer than those on the second layer at high frequencies.These obtained results lay the theoretical basis of guided-wave nondestructive test on multilayered quasi-crystal plates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号