首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
  国内免费   3篇
物理学   5篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2003年   1篇
排序方式: 共有5条查询结果,搜索用时 343 毫秒
1
1.
本文基于密度泛函理论,采用B3LYP方法,在6-31G(d,p)基组上对麻醉剂氯普鲁卡因的分子结构进行几何优化,在此基础上以乙醇为溶剂计算分子的前20个激发态,所有计算在Gaussian 09W-D01中进行。利用Multiwfn3.7软件绘制红外光谱图,并对其分子振动进行分析;利用Origin 2018 64Bit软件和Multiwfn3.7软件相结合绘制紫外光谱图,并计算空穴-电子来分析分子的激发态性质;通过计算前线轨道来预测氯普鲁卡因分子的活性位点。结果表明,在所计算得到的激发态中,由基态到第2、3、6、10激发态为局域激发,由基态到第19激发态为电荷转移激发。氯普鲁卡因乙氨基上的N22为亲电反应位点,苯环上的碳原子和脂基上的氧原子为亲核反应位点。本研究对更好的了解氯普鲁卡因分子的反应机理和在医学上的麻醉活性提供理论参考。  相似文献   
2.
肾上腺素是一种神经和激素的传送体,研究肾上腺素分子的光谱和能级有助于了解其化学稳定性和药理作用。基于密度泛函理论(DFT),利用Gaussian 09软件在B3LYP/6-311G(d,p)基组水平上对肾上腺素分子进行结构优化,采用含时密度泛函理论(TD-DFT)的PBE方法在def2tzvp基组水平上计算肾上腺素分子在气相中的前20个激发态,利用Multiwfn3.7(dev)软件绘制出其紫外光谱图并对激发性质进行分析。肾上腺素分子紫外光谱对应的主要跃迁是从基态分别到第1,2,4,8,15和16激发态的跃迁,其他的激发态的振子强度低于阈值0.03。理论计算得出肾上腺素的紫外光谱有两个吸收峰,分别位于206.23和273.92 nm,206.23 nm峰主要由基态跃迁到第16激发态形成,273.92 nm峰主要是基态跃迁到第2、4激发态形成,主要是由苯环上π→π*跃迁所产生,并与实验光谱吻合较好。对肾上腺素分子的激发态性质分析可知,上述吸收峰都是在最高占据轨道和最低空轨道的临近轨道跃迁产生的。利用密度泛函的PBE方法在6-311G(d, p)的基组水平上计算肾上腺素分子频率并绘制红外光谱,由振动分析可知,3 738和3 662 cm-1峰是由酚羟基O-H伸缩振动产生的特征吸收峰,3 715 cm-1峰是由醇羟基O-H伸缩振动产生的特征吸收峰,2 854 cm-1峰是由甲基的C18-H20键的伸缩振动产生的特征吸收峰,1 516和1 439 cm-1峰是苯环骨架的伸缩振动的特征吸收峰,1 279与1 057 cm-1峰分别是由C6-O10和C12-O23键伸缩振动产生的特征吸收峰,620 cm-1峰是N22-H17键摇摆振动的特征吸收峰。对比肾上腺素的实验红外光谱,发现理论光谱与实验光谱中各基团的特征吸收峰都较为明显且总体吻合较好。由于肾上腺素分子二聚体和多聚体之间形成氢键,分子间氢键的形成削弱了O-H键的强度,降低了能形成分子间氢键的羟基O-H的伸缩振动频率,从而导致实验光谱在3 500~2 500 cm-1之间呈现出一个宽峰。  相似文献   
3.
L-茶氨酸(N-乙基-L-谷氨酰胺)是一类具有降压、抗氧化的非蛋白氨基酸,研究外场下它的结构和光谱特征有助于人们更好地认识L-茶氨酸分子的性质.基于密度泛函理论,利用B3LYP方法,在6-311g(d,p)基组水平上对L-茶氨酸分子进行几何构型优化,在此基础上计算L-茶氨酸分子在不同外电场下(0~0.0125 a.u.)的分子各键长与振动频率,得到对应的红外光谱.同时,在相同的基组下采用含时密度泛函方法(TD-DFT)计算外电场对分子的激发态、前线轨道和能隙的影响.结果表明:分子结构及其紫外、红外光谱都随外电场强度发生变化.随外电场的增加,伸缩振动频率红移,弯曲振动频率蓝移;最高占据轨道的能量(E_(HOMO))与最低空轨道的能量(E_(LUMO))发生改变,前线轨道能隙先小幅增加后随电场减小,分子活性先减小后增强;紫外吸收光谱先蓝移后红移.本研究对L-茶氨酸分子的检测、合成及其生物活性的研究可提供理论依据.  相似文献   
4.
特丁基对苯二酚是重要的食品抗氧化剂.理论上,基于密度泛函理论,采用B3LYP泛函及6-311G(d,p)基组在气相环境下优化分子的结构并进行频率计算.在此基础上,基于含时密度泛函理论,选用SMD(solvation model based on density)溶剂模型,利用B3LYP泛函并结合def2-TZVP基组计算分子在无水乙醇溶剂中的前50个激发态.再通过Multiwfn软件对红外光谱做振动分析并考察分子间相互作用对红外光谱的影响,对紫外光谱做分子轨道和电子空穴分析.实验上,通过KBr压片法,利用傅里叶红外变换光谱仪测定样品红外光谱.采用液相法,以乙醇为溶剂,利用紫外可见分光光度计测定样品紫外光谱.通过对比分析可知,理论光谱与实验光谱总体吻合较好.红外光谱各基团的特征吸收峰都较为明显且较好吻合,特丁基对苯二酚二聚体存在氢键作用,这使得O—H键的强度被削弱,导致吸收频率降低并在3670—3070 cm-1处出现一个宽峰.紫外光谱主要由基态跃迁至第1,2,6,7激发态形成,最大吸收峰位于200 nm以下,为π→π*和s→π*跃迁形成,268.8 nm和221.4 nm处的吸收峰均为n→π*和π→π*跃迁形成.由电子空穴图可知,这4个主要激发均为电子局域激发.  相似文献   
5.
本文基于密度泛函理论,采用B3LYP方法,在6-31G(d,p)基组上对麻醉剂氯普鲁卡因的分子结构进行几何优化,在此基础上以乙醇为溶剂计算分子的前20个激发态,所有计算在Gaussian 09W-D01中进行.利用Multiwfn3.7软件绘制红外光谱图,并对其分子振动进行分析;利用Origin 201864Bit软件和Multiwfn3.7软件相结合绘制紫外光谱图,并计算空穴-电子来分析分子的激发态性质;通过计算前线轨道来预测氯普鲁卡因分子的活性位点.结果表明,在所计算得到的激发态中,由基态到第2、3、6、10激发态为局域激发,由基态到第19激发态为电荷转移激发.氯普鲁卡因乙氨基上的N22为亲电反应位点,苯环上的碳原子和脂基上的氧原子为亲核反应位点.本研究对更好的了解氯普鲁卡因分子的反应机理和在医学上的麻醉活性提供理论参考.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号