首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   3篇
化学   1篇
物理学   6篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2012年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
In this study, based on the first-principles calculations, we systematically investigated the electronic and magnetic properties of the transition metal–oxide-incorporated 2D g-C3N4 nanosheet (labeled C3N4– TM–O, TM= Sc–Mn). The results suggest that the TM–O binds to g-C3N4 nanosheets strongly for all systems. We found that the 2D C3N4–TM–O framework is ferromagnetic for TM= Sc, Ti, V, Cr, while it is antiferromagnetic for TM= Mn. All the ferromagnetic systems exhibit the half-metallic property. Furthermore, Monte Carlo simulations based on the Heisenberg model suggest that the Curie temperatures (Tc) of the C3N4–TM–O (TM= Sc, Ti, V, Cr) framework are 169 K, 68 K, 203 K, and 190 K, respectively. Based on Bader charge analysis, we found that the origin of the half-metallicity at Fermi energy can be partially attributed to the transfer of electrons from TM atoms to the g-C3N4 nanosheet. In addition, we found that not only electrons but also holes can induce half-metallicity for 2D g-C3N4 nanosheets, which may help to understand the origin of half-metallicity for graphitic carbon nitride.  相似文献   
2.
利用超高真空扫描隧道显微镜, 在低温(80 K)下研究了同分异构体分子Dy@C82在Au(111)表面的吸附与分子取向.在低覆盖度下,Dy@C82分子优先吸附于台阶边缘形成分子团簇与分子链结构.这种吸附取决于分子-衬底的相互作用,并存在多种不同的分子取向.增大分子覆盖度后,Dy@C82在金表面形成二维有序密排的单层膜结构.Dy@C82分子在金表面的取向倾向于其C2长轴与金表面近乎平行.具有三种取向的分子最具优势,而同种取向的分子组成许多局限于一个个小区域内的取向有序结构畴.随着覆盖度的增加,Dy@C82分子在Au(111)表面趋向于短程有序取向排列,这是由分子-衬底作用与分子间的偶极-偶极作用共同决定的.  相似文献   
3.
In order to obtain a comprehensive understanding of both thermodynamics and kinetics of water dissociation on TiO2, the reactions between liquid water and perfect and defective rutile TiO2 (110) surfaces were investigated using ab initio molecular dynamics simulations. The results showed that the free-energy barrier (~4.4 kcal/mol) is too high for a spontaneous dissociation of water on the perfect rutile (110) surface at a low temperature. The most stable oxygen vacancy (Vo1) on the rutile (110) surface cannot promote the dissociation of water, while other unstable oxygen vacancies can significantly enhance the water dissociation rate. This is opposite to the general understanding that Vo1 defects are active sites for water dissociation. Furthermore, we reveal that water dissociation is an exothermic reaction, which demonstrates that the dissociated state of the adsorbed water is thermodynamically favorable for both perfect and defective rutile (110) surfaces. The dissociation adsorption of water can also increase the hydrophilicity of TiO2.  相似文献   
4.
当今世界环境与能源问题日益加剧,乙醇作为一种重要的清洁燃料和化学品受到广泛关注,迫切需要探索高效的乙醇合成方法,以满足日益增长的市场需求.其中,将煤炭、生物质、页岩气等为原料合成的二甲醚通过羰基化反应制乙酸甲酯、乙酸甲酯加氢制乙醇的串联式绿色乙醇合成路线具有重要的工业应用前景.然而,在二甲醚羰基化过程中,丝光沸石分子筛易积碳失活,阻碍了其工业应用.吡啶改性可以毒化丝光沸石12元环孔道中的酸性位,抑制积碳的形成,进而大幅度提高该催化剂的稳定性,但同时会使其催化活性降低约40%–50%.为了解决这一难题,本文从分子水平上研究了吡啶吸附行为以及分子筛骨架空间位阻对丝光沸石催化剂上二甲醚羰基化反应的影响.通过解析丝光沸石的骨架结构,我们发现位于8元环侧袋和12元环孔道共用孔壁处O_2位置上的酸性位是二甲醚羰基化反应的活性位,但它们在吡啶修饰过程中易被毒化而使催化剂活性下降.密度泛函理论计算结果表明,吡啶分子因受分子筛骨架空间位阻的影响,在O_2处酸性位上的吸附较弱.而实验结果也表明,通过673 K热处理可以再生被吡啶毒化的O_2活性位,而并不影响12元环孔道中其它吡啶分子的吸附.因此,该热处理方法可以使丝光沸石催化剂保持高稳定性的同时,将二甲醚羰基化反应催化活性提高约60%.本文从分子水平证明了丝光沸石中O_2活性位对二甲醚羰基化反应的重要作用,为绿色乙醇合成技术研究提供了新的思路,也为其它高效分子筛催化体系设计提供了有益的参考.  相似文献   
5.
By the first-principles calculations,most studies indicated that the (11102)-CoO2 termination of LaCoO3 cannot be stabilized,which disagrees with the experimental observation.Besides the crystal structure,we found that the spin states of Co3+ ions could affect surface stability,which previously were not well considered.By examining the different states of Co3+ ions in hexagonal-phase LaCoO3,including low spin,intermediate spin,and high spin states,the surface grand potentials of these facets are calculated and compared.The results show that the spin states of Co3+ ions have an important influence on stability of the LaCoO3 facets.Different from the previous results,the stability diagrams demonstrate that the (11102)-CoO2 termination can stably exist under O-rich condition,which can get an agreement with the experimental ones.Furthermore,the surface oxygen vacancy formation energies (EOv) of stable facets are computed in different spin states.The EOv of these possible exposed terminations strongly depend on the spin state of Co3+ ions:in particular,the EOv of the HS states is lower than that of other spin states.This indicates that one can tune the properties of LaCoO3 by directly tuning the spin states of Co3+ ions.  相似文献   
6.
In order to obtain a comprehensive understanding of both thermodynamics and kinetics of water dissociation on TiO2, the reactions between liquid water and perfect and defective rutile TiO2 (110) surfaces were investigated using ab initio molecular dynamics simulations. The results showed that the free-energy barrier (~4.4 kcal/mol) is too high for a spontaneous dissociation of water on the perfect rutile (110) surface at a low temperature. The most stable oxygen vacancy (Vo1) on the rutile (110) surface cannot promote the dissociation of water, while other unstable oxygen vacancies can significantly enhance the water dissociation rate. This is opposite to the general understanding that Vo1 defects are active sites for water dissociation. Furthermore, we reveal that water dissociation is an exothermic reaction, which demonstrates that the dissociated state of the adsorbed water is thermodynamically favorable for both perfect and defective rutile (110) surfaces. The dissociation adsorption of water can also increase the hydrophilicity of TiO2.  相似文献   
7.
In this study, based on the first-principles calculations, we systematically investigated the electronic and magnetic properties of the transition metal–oxide-incorporated 2D g-C3N4 nanosheet (labeled C3N4–TM–O, TM = Sc–Mn). The results suggest that the TM–O binds to g-C3N4 nanosheets strongly for all systems. We found that the 2D C3N4–TM–O framework is ferromagnetic for TM = Sc, Ti, V, Cr, while it is antiferromagnetic for TM = Mn. All the ferromagnetic systems exhibit the half-metallic property. Furthermore, Monte Carlo simulations based on the Heisenberg model suggest that the Curie temperatures (T c ) of the C3N4–TM–O (TM = Sc, Ti, V, Cr) framework are 169 K, 68 K, 203 K, and 190 K, respectively. Based on Bader charge analysis, we found that the origin of the half-metallicity at Fermi energy can be partially attributed to the transfer of electrons from TM atoms to the g-C3N4 nanosheet. In addition, we found that not only electrons but also holes can induce half-metallicity for 2D g-C3N4 nanosheets, which may help to understand the origin of half-metallicity for graphitic carbon nitride.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号