首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   2篇
化学   2篇
物理学   5篇
  2010年   1篇
  2001年   2篇
  1999年   2篇
  1997年   2篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
C(膜)/Si(SiO2 )(纳米微粒)/C(膜)热处理的形态及结构分析   总被引:1,自引:0,他引:1  
用直流辉光溅射+真空镀膜法制备了一种新型结构的硅基纳米发光材料- C(膜)/Si(SiO2)(纳米微粒)/C(膜)夹层膜,并对其进行了退火处理.用TEM、 SEM、 XRD和XPS对其进行了形态结构分析.TEM观察表明: Si(SiO2)纳米微粒基本呈球形,粒径在30 nm左右.SEM观察表明: 夹层膜样品总厚度约为50 μm,膜表面比较平整、致密.400℃退火后,样品表面变得凹凸不平,出现孔状结构; 650℃退火后,样品表面最平整、致密且颗粒均匀.XRD分析表明:制备出的夹层膜主要由SiO2和Si组成,在C原子的还原作用和氧气的氧化作用的共同作用下, SiO2和Si的含量随加热温度的升高而呈现交替变化: 400℃时, C的还原作用占主导地位, SiO2几乎全部被还原成了Si,此时Si含量最高; 400~650℃时,氧化作用占主导地位, Si又被氧化成SiO2, Si含量降低, SiO2含量逐渐上升,在650℃达到最高.XPS分析表明: 在加热过程中, C原子逐渐扩散进入Si(SiO2)微粒层,在650℃与Si反应生成了新的SiC.  相似文献   
2.
C(膜)/Si(SiO2)(纳米微粒)/C(膜)热处理的形态及结构分析   总被引:1,自引:0,他引:1  
用直流辉光溅射+真空镀膜法制备了一种新型结构的硅基纳米发光材料-C(膜)/Si(SiO2)(纳米微粒)/C(膜)夹层膜,并对其进行了退火处理,用TEM,SEM,XRD和XPS对其进行了形态结构分析,TEM观察表明:Si(SiO2)纳米微粒基本呈球形,粒径在30nm左右,SEM观察表明:夹层膜样品总厚度约为50um ,膜表面比较平整,致密,400度退火后,样品表面变得凹凸不平,出现孔状结构;650度退火后,样品表面最平整,致密且颗粒均匀,XRD分析表明:制备出的夹层膜主要由SiO2和Si 组成,在C原子的还原作用和氧气的化作用的共同作用下,SiO2和Si含量随加热温度的升高而呈现交替变化;400度时,C的还原作用占主导地位,SiO2几乎全部被还原成了Si,此时Si含量最高;400-650度时,氧化作用占主导地位,Si又被氧化成SiO2,Si 含量降低,SiO含量逐渐上升,在650度达到最高,XS分析表明:在加热过程中,C原子逐渐扩散进入Si(SiO2)_微粒层,在650度与Si反应生成了新的SiC。  相似文献   
3.
4.
林跃强  林盛松 《物理实验》1997,17(4):189-189
在光谱分析实验中,需用比长仪测量出光谱话线间距,然后用内插法求得待测谱线波长的实验内容较多,如H、D原子光谱分析等.测量的一般方法和步骤是;利用摄谱仪上的哈特曼光用将铁谱及待分析测量的光谱并排拍摄在一起,然后在光谱投影仪上将所摄谱线放大二十倍后与放大了同样倍数的标准铁谱图相对照,以铁谱谱线作为波长标尺,把待测谱线附近的铁谱线波长找到后,用比长仪测量出待测谱线与这些铁谱线的间距,利用内插法求得待测谱线之波长.A一一人十“(人一人)式中人、人为铁谱线波长,a、bud线相关间距.上述测量方法对初次接触该实…  相似文献   
5.
电弧法制备Fe—C纳米微粒的分析   总被引:2,自引:0,他引:2  
用X射线衍射、电子显微镜、X射线光电子能谱和振动样品磁强计对在10和18kPa压强的氢气中以铁和碳作为电极,通过交流电弧法制备的微粒进行了分析。结果表明,用此方法可制取纳米量级的合金微粒。  相似文献   
6.
Fe-C纳米微粒的透射电镜观察与选区电子衍射分析   总被引:12,自引:1,他引:11  
利用透射电镜观察和选区电子衍射分析研究了在18kPa的Ar气氛中通过交流电弧法制备的Fe -C纳米微粒。结果表明微粒主要为两种类型 :一类是FeC合金微粒 ,另一类是具有氧化层结构的Fe微粒 ,不同粒径的微粒类呈现不同聚集特性。  相似文献   
7.
测量了MnFe2O4纳米微粒及其磁性液体在室温下的磁化曲线.微粒的中值粒径为13.67 nm. 磁性液体的比饱和磁化强度小于理论值.在高场范围(5~10 kOe)下,磁性液体趋于饱和时,其体积分数越大,磁化曲线的斜率越大. 这种饱和磁化强度性质和趋饱和律分别源自于无场时的环状自组装团聚体和场致团聚体. 场致团聚体是耗散结构,以致于其趋饱和磁化律不同于顺磁理论所描述的趋饱和律. 磁性液体中的大微粒导致了表观磁滞现象.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号