首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   25篇
化学   35篇
物理学   1篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   6篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   5篇
  2004年   1篇
  2003年   2篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
碳酸钾或碳酸钠颗粒作催化剂基底,采用化学气相沉积(CVD)制得类似于石墨烯的层状碳材料,并经原位化学沉积可得层状碳/硫酸铅复合材料.用X射线衍射(XRD)、热重分析、扫描电镜(SEM)和透射电镜(TEM)分析与测试样品.结果表明,层状碳为无定型碳层,复合材料为无定型碳层与附着其上的细小硫酸铅颗粒的复合.上述层状碳和复合材料作为负极添加剂应用于铅酸电池中,测试了电池电化学性能.结果表明,电池大电流放电比容量和循环寿命均明显提高.通过电化学交流阻抗谱图(EIS)、充放电曲线和负极失效后的SEM照片证实,加入添加剂能够降低负极板的欧姆阻抗和电化学反应阻抗、减小极化及有效抑制极板硫酸盐化.  相似文献   
2.
基体对流动锌酸钾碱液中锌电沉积的影响   总被引:1,自引:0,他引:1  
在流动的高浓度锌酸钾碱液中研究了镍箔和镀镍冲孔钢带基体电极对锌沉积/溶解电化学行为的影响.结果表明,在流动电解液中电极表面浓度梯度变化不大,不同基体上均未出现锌沉积的阴极峰;扫描速度超过10 mV/s,循环伏安曲线基本不随扫速变化,说明锌的沉积/溶解峰电流不仅与扫描速度有关,还取决于锌沉积的时间.采用镀镍冲孔钢带基体兼...  相似文献   
3.
用X射线能量色散谱(EDS)、X射线衍射(XRD)谱、拉曼光谱和电化学技术研究和比较了直接甲酸燃料电池(DFAFC)中Vulcan XC-72炭黑载Pd (Pd/XC)和大孔炭载Pd (Pd/MC)催化剂对甲酸氧化的电催化性能. 循环伏安曲线测量表明甲酸在Pd/XC和Pd/MC催化剂电极上主要氧化峰的峰电位基本相同, 在0.15 V左右, 但在Pd/MC催化剂电极上的峰电流密度比在Pd/XC催化剂上的大30%左右. 计时电流曲线测量表明, 在6000 s时, 在Pd/MC催化剂电极上的峰电流密度比在Pd/XC催化剂上的大38%左右, 这些结果说明Pd/MC催化剂对甲酸氧化的电催化活性和稳定性要好于Pd/XC催化剂. 由于Pd/MC和Pd/XC催化剂的Pd粒子平均粒径和相对结晶度相似, 因此, Pd/MC催化剂电催化性能好的原因只能归结于MC大的孔径和高的石墨化程度引起的高电导率.  相似文献   
4.
报道了一种HBF4水溶液中的全铅液流电池,正、负电极电解液均采用Pb(BF42的HBF4水溶液.在酸性的四氟硼酸铅电解液中考察了石墨电极和玻碳电极作为工作电极的循环伏安性能,石墨电极较适于用作全铅液流电池的正、负电极.采用石墨电极作为电池的正、负电极并在四氟硼酸铅酸性电解液中进行充放电实验,其中Pb(BF42浓度分别为0.5、1.0和1.5 mol·L-1,且保持游离的HBF4浓度为1.0 mol·L-1.该电池为单液流电池,不需要隔膜分隔正、负极的电解液,电流密度为10、20和40 mA.cm-2,当限定充电容量为7.0 mAh.cm-2,放电电压截止到1.0 V时,平均库仑效率大于87%,平均能量效率大于68%;当电解液采用1.0或1.5 mol·L-1 Pb(BF42+1.0 mol·L-1HBF4水溶液时,在10及20 mA.cm-2电流下的能量效率最高可超过74%.  相似文献   
5.
通过电化学测试、扫描电子显微镜观察和X射线衍射分析研究了电解液流速、电流密度和锌沉积面容量三者关系及对锌镍单液流电池充放电性能和负极锌沉积形貌的影响.结果表明,锌沉积面容量是影响锌镍单液流电池充放电效率和负极锌沉积形貌的最主要因素,电解液流速不宜过高或过低.随着锌沉积面容量的增大,电池的充放电效率和循环稳定性对电流密度的变化更为敏感,适宜的电解液流速范围变窄.锌沉积面容量在25 mA·h/cm2以上,锌沉积皆呈海绵状.在较低锌沉积面容量下,电解液流速也较低时,海绵锌沉积较为均匀致密.而在高的锌沉积面容量下,海绵状锌沉积的团簇和颗粒变大,不均匀性加重,仅在适中的电解液流速(7.1 L/min)下,锌沉积部分致密规整,电池具有较好的充放电性能.  相似文献   
6.
可用至3.5V的碳纳米管阵列超级电容器   总被引:2,自引:0,他引:2  
应用化学气相沉积在钽片和不锈钢片表面直接生长碳纳米管阵列(CNTA)制备超级电容器电极,并分别作正、负极组装有机体系扣式电容器. 扫描电子显微镜、循环伏安、恒电流充放电和交流阻抗表征、测试材料的微观形貌和电化学性能. 结果表明,该电容器可获得高达3.5 V的工作电压,较长的循环寿命,较好的倍率性能. 基于CNTA质量的比功率和比能量性能分别为928 kW·kg-1和19 Wh·kg-1.  相似文献   
7.
酚醛基活性炭纤维孔结构及其电化学性能研究   总被引:8,自引:0,他引:8  
利用水蒸汽活化法制备了酚醛基活性炭纤维(ACF-H2O), 对其比表面积、孔结构与在LiClO4/PC(聚碳酸丙烯酯)有机电解液中的电容性能之间的关系进行了探讨. 用N2(77 K)吸附法测定活性炭纤维的孔结构和比表面积, 用恒流充放电法和交流阻抗技术测量双电层电容器(EDLC)的电容量及内部阻抗. 研究表明, 在LiClO4/PC有机电解液中, ACF-H2O电极的可用孔径(d)应在0.7 nm以上. 随着活化时间的延长, ACF-H2O的孔容和比表面不断增大, 但微孔(0.7 nm < d < 2.0 nm)和中孔(d > 2.0 nm)率变化很小, 活化过程中孔的延伸和拓宽同步进行, 但过度活化则造成孔壁塌陷, 孔容和比表面迅速下降. 因此, 除活化过度的样品外, 电容量随比表面积呈线性增长, 最高达到109. 6 F•g-1. 但中孔和微孔的孔表面对电容的贡献不同, 其单位面积电容分别为8.44 μF•cm-2和4.29 μF•cm-2, 中孔具有更高的表面利用率. ACF-H2O电极的电容量、阻抗特性和孔结构密切相关. 随着孔径的增大, 时间常数减小, 电解液离子更易于向孔内快速迁移, 阻抗降低, 电极具有更好的充放电倍率特性. 因此, 提高孔径和比表面积, 减少超微孔(d < 0.7 nm), 是提高 EDLC能量密度和功率密度的重要途径. 然而仅采用水蒸汽活化, 只能在小中孔以下的孔径范围内进行调孔, ACF-H2O电极电容性能的提高受限.  相似文献   
8.
采用热化学气相沉积(TCVD)法裂解酞菁铁(FePc)和乙烯(C2H4)制备出高210 μm的取向碳纳米管阵列(ACNTA). 用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、拉曼光谱和X射线光电子能谱(XPS)对制备的样品进行了表征, 系统研究了反应温度、反应时间、C2H4流量对ACNTA生长的影响. 结果表明, 样品具有高取向性且纯度高. 800 ℃是裂解FePc和C2H4制备ACNTA的最优温度, 催化剂的活性可以保持较长时间(60 min), 通入C2H4促进了ACNTA的快速生长, 最适合流量为50 cm3/min.  相似文献   
9.
活性碳纳米管的制备及其在有机电解液中的电容性能研究   总被引:1,自引:0,他引:1  
徐斌  吴锋  苏岳锋  曹高萍  陈实  杨裕生 《化学学报》2007,65(21):2387-2392
以KOH为活化剂对碳纳米管进行化学活化制备双电层电容器用高比表面积活性碳纳米管. 采用TEM和N2吸附法表征活性碳纳米管的结构, 采用恒流充放电、循环伏安、交流阻抗等评价其在1 mol•L-1 Et4NBF4/PC中的电容性能. 随活化剂用量增大、活化温度升高和活化时间的延长, 活性碳纳米管的比表面积和比电容都呈增大的趋势. 活化剂用量为3∶1, 800 ℃活化4 h制备的活性碳纳米管的比表面积663 m2•g-1, 比活化前提高了3倍, 其比电容达57.2 F• g-1, 比活化前提高了2倍. 将活性碳纳米管的比电容与其比表面积相关联, 发现两者之间具有非常好的线性关系, 并分析了原因.  相似文献   
10.
利用高温氨解还原氧化钒(V2O5)制备了氮化钒(VN)纳米材料.采用XRD、SEM与TEM观察分析样品的结构和形貌,采用氮气吸附、循环伏安曲线以及恒流充放电曲线测试样品的比表面积、孔径分布和电极电化学性能.结果表明,VN样品属于立方晶系(Fm3m[225]),其大小均一,近似球形,氨解时间的加长(12 h),小颗粒间相互交联可形成一定的介孔.50 mA.g-1电流密度下VN-c电极的比电容能达到192 F.g-1,1000周期循环其比电容仍有150 F.g-1,同时具有双电层电容性能和氧化还原反应的准电容性能.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号