首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   617篇
  免费   179篇
  国内免费   265篇
化学   462篇
晶体学   25篇
力学   60篇
综合类   39篇
数学   103篇
物理学   372篇
  2023年   14篇
  2022年   23篇
  2021年   18篇
  2020年   8篇
  2019年   27篇
  2018年   26篇
  2017年   21篇
  2016年   13篇
  2015年   24篇
  2014年   38篇
  2013年   38篇
  2012年   58篇
  2011年   58篇
  2010年   42篇
  2009年   58篇
  2008年   46篇
  2007年   44篇
  2006年   50篇
  2005年   43篇
  2004年   47篇
  2003年   35篇
  2002年   28篇
  2001年   25篇
  2000年   51篇
  1999年   29篇
  1998年   26篇
  1997年   19篇
  1996年   21篇
  1995年   21篇
  1994年   15篇
  1993年   12篇
  1992年   22篇
  1991年   12篇
  1990年   8篇
  1989年   7篇
  1988年   6篇
  1987年   8篇
  1986年   5篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1975年   1篇
  1972年   1篇
  1964年   2篇
  1955年   1篇
排序方式: 共有1061条查询结果,搜索用时 15 毫秒
1.
针对苯系物泄露次生突发环境事件的应急响应问题,研究了基于案例推理和处置效果的应急方案生成方法。首先,在计算案例相似度时,为避免历史案例不全产生的情景要素遗失,基于随机森林算法,结合专家知识构建了权重求解方法,采用案例检索方法得到相似案例集;然后,构建了应急处置效果评估指标体系,以全面评价相似案例对应的处置效果;进一步,考虑多专家评价可弥补决策者知识、经验等的不足,引入了自适应群共识调整算法,得到群体评价意见,通过集结相似度与处置效果,得到了方案的综合评价值并生成最优方案;最后,用算例说明了方法的可行性和有效性。  相似文献   
2.
氢气作为一种清洁、高效、可持续的二次能源,在未来我国终端能源体系占比至少10%,以氢能作为汽车和飞机动力学系统燃料的研究成为热点. 机械运动部件表界面与氢介质将发生复杂的物理化学反应,影响着机械运动接触面的摩擦学行为,使役过程中氢致疲劳、磨损及腐蚀失效行为,严重制约着机械动力部件运行稳定性、可靠性和安全性. 本文中重点调研了国际上氢气气氛环境下机械运动部件材料的摩擦磨损行为研究进展,总结了氢气环境下聚合物基、陶瓷基、金属基及低维度固体颗粒材料的摩擦磨损行为及其损伤失效演变规律,进一步阐述了摩擦工况下氢气和其他气体介质共存与使役材料的摩擦学行为之间的关联性. 从摩擦学角度提出了抑制氢致损伤的可行性关键技术及防护材料,并对未来涉氢机械部件服役安全性的科学问题进行了展望.   相似文献   
3.
制备了一种可定性定量检测水溶液中三价铁离子的含铕聚苯乙烯微球, 分别用固体核磁碳谱(13C CP/MAS NMR)、 傅里叶变换红外光谱(FTIR)、 X射线光电子能谱(XPS)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 元素分析、 粒度分析和ζ电位分析等对其化学组成和结构形貌进行表征. 当铕配合物单体用量低于2.5%时, 可以得到稳定的单分散键合型含铕聚苯乙烯微球. 用紫外光激发时, 该含铕聚苯乙烯微球发射铕离子的特征红光. Fe3+能猝灭该微球的荧光, 酸根离子和其它金属离子对其干扰较少; 猝灭效率与Fe3+浓度在0~300 μmol/L浓度范围内均呈线性关系; 随着铕配合物单体用量的增加, 微球的荧光增强, 其在检测Fe3+的荧光时, 猝灭常数(KSV)增加, 检测限(LOD)下降. 调节铕配合物单体的用量, 可获得热性能优异、 红光发射强度高且稳定性好的单分散聚苯乙烯荧光微球, 对Fe3+荧光检测显示出较高的选择性, 在生物检测和环境保护等领域具有较高的应用价值.  相似文献   
4.
遵循“学生主体、教师主导”的教育教学理念,借助信息化教学工具,合理有效地设计好每一个教学环节.采用演示、体验、探究、问题导向和分组讨论等教学手段和方法,让学生在课堂中自主发现问题、分析问题并解决问题,实现“学生做中学、教师做中教”,大大提升教学效果.  相似文献   
5.
晶体硅表面钝化是高效率晶体硅太阳能电池的核心技术,直接影响晶体硅器件的性能。本文采用第一性原理方法研究了一种超强酸-双三氟甲基磺酰亚胺(TFSI)钝化晶体硅(001)表面。研究发现,TFSI的四氧原子结构能够与Si(001)表面Si原子有效成键,吸附能达到-5.124 eV。电子局域函数研究表明,TFSI的O原子与晶体硅表面的Si的成键类型为金属键。由态密度和电荷差分密度分析可知,Si表面原子的电子向TFSI转移,从而有效降低了Si表面的电子复合中心,有利于提高晶体硅的少子寿命。Bader电荷显示,伴随着TFSI钝化晶体硅表面的Si原子,表面Si原子电荷电量减少,而TFSI中的O原子和S原子电荷电量相应增加,进一步证明了TFSI钝化Si表面后的电子转移。该工作为第一性原理方法预测有机强酸钝化晶体硅表面的钝化效果提供了数据支撑。  相似文献   
6.
便携式X射线荧光光谱仪快速监测重金属土壤环境质量   总被引:8,自引:0,他引:8  
便携式X射线荧光光谱仪(PXRF )作为一种新型快速测试手段具有突出的应用前景,但也存在检测范围和检测限的局限,为此本文研究PXRF仪器在快速监测土壤环境质量中Cr ,Ni ,Cu ,Zn ,Pb ,Cd ,As和Hg等8种重金属元素的适用性,筛选仪器可检测元素,评价检测结果准确度。具体方法是使用仪器测试重金属污染土壤样品,测试结果与电感耦合等离子体质谱分析方法(IC P‐M S )测试值进行对比,评判检测结果精密度,建立PXRF仪器测试值与ICP‐MS仪器测试值的线性回归关系。结果表明:(1)在监测重金属土壤环境质量时,PXRF仪器可用于检测土壤中Pb ,Zn ,Cr和Cu含量,但不适于检测Ni ,Cd ,As和 Hg含量。(2)Pb和Zn测试值稍低于ICP‐MS测试值,Cu偏高,而Cr过高;PXRF仪器测试值需要参照标准分析方法进行线性校正。研究结论为:便携式X射线荧光光谱仪适用于Pb ,Zn ,Cr和Cu等4种重金属的土壤环境质量监测,是一种简单快速、准确可靠的低成本土壤重金属分析手段。该研究的创新之处是合理规避PXRF仪器的缺点,将仪器应用于土壤环境质量监测,提高了测试结果应用价值。  相似文献   
7.
光照均匀性问题是太阳模拟器照明系统的主要问题。针对目前卤素灯作为光源进行灯阵光照均匀性的阵列设计多采用理论计算的方法,复杂繁琐,不易施行的缺点,将数值优化方法应用于卤素灯阵列结构设计中,与单一的算法不同,模拟退火算法与粒子群算法相结合的方式,突破了单一算法的局限性,得到的结果更加良好,均匀性更佳。通过编程优化灯阵中每个灯的坐标,将最优结果导入光学仿真软件进行照度分析,实验数据显示,3种灯阵下的光照均匀度分别为91%、87%和91%,同等条件下的六边形灯阵的光照均匀度要比圆形的均匀度好,采用最优化方法,可使实验更加简单可行。  相似文献   
8.
覃业宏  唐超  张春小  孟利军  钟建新 《物理学报》2015,64(1):16804-016804
本文利用分子动力学的方法和模拟退火技术从原子尺度分析研究了Si (100), Si (111)和Si (211)表面单原子层石墨烯的褶皱形貌及其演化特点. 研究表明, 分别置于Si晶体的三种不同原子表面的石墨烯都展现出原子尺度的褶皱形貌. 石墨烯与Si晶体表面原子的晶格失配是引起石墨烯褶皱的主要原因. 研究发现, Si晶体表面石墨烯的褶皱形貌强烈的依赖于退火温度. 石墨烯的褶皱形貌还将直接影响其在Si晶体表面的吸附稳定性. 这些研究结果有助于人们认识基于Si晶体衬底的石墨烯的结构形貌及其稳定性, 为石墨烯的进一步应用提供理论参考.  相似文献   
9.
塞曼效应实验是学生了解原子具有磁矩和空间取向量子化现象的重要实验,至今塞曼效应仍是研究能级结构的重要方法之一.为了能够让学生更加清楚地了解塞曼效应实验的基本原理和操作规程,针对教学中的重点和难点,运用flash软件制作出塞曼效应仿真实验.该程序可全程高度仿真实验过程,具有界面友好、易于操作、无需安装等优点.为实验教学提供了一种新的辅助方式.  相似文献   
10.
针对离轴菲涅耳数字全息图,提出基于深度学习的单幅数字全息非线性重构方法 .采用经典的菲涅耳衍射积分模拟数字全息成像以供给网络训练所需样本,利用深度卷积残差神经网络通过学习数字全息图与相关物像之间的非线性数学映射关系实现全息图的物像重构.数值模拟表明,与传统的频率滤波和四步相移技术实现菲涅耳数字全息重构相比,本文提出的方法可直接消除零级像及孪生像,无需条纹物项抽取预处理步骤,且重构的物像具有较高的质量,针对相同记录参考光下不同衍射距离所生成的测试集亦具有较强的稳健性.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号