首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   3篇
  国内免费   16篇
化学   33篇
物理学   5篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
1.
NxHy-Fe(x=0~2,y=0~3)配位簇的DFT计算   总被引:1,自引:0,他引:1  
采用杂化密度泛函(DFT)之B3LYP/6-311G**方法研究了NxHy-Fe(x=0~2,y=0~3)配位簇的几何结构和振动光谱。讨论了在纯铁催化剂上,氮分子和氢分子逐步合成氨的反应机理。结果表明,合成氨过程可能经历N2和N2H2物种。在优化结构的基础上,计算了各个模型的振动频率并解释了有关实验结果。  相似文献   
2.
以柠檬酸法制备的Fe MgO、Co MgO和Ni MgO为催化剂 ,CH4 为碳源气 ,H2 为还原气 ,在 873、973和 10 73K制备出碳纳米管 ,通过TEM和拉曼光谱表征 ,讨论了催化剂、制备温度、反应时间等因素对碳纳米管形貌、产率和内部结构的影响 .结果表明 :不同的催化剂在相同的温度下制备的碳纳米管的形态和内部结构有很大的差异 .其中Fe MgO催化剂制备的碳纳米管管径粗 ,且大小不均匀 ,而Ni MgO催化剂制备的碳纳米管管径较细、较均匀 .碳纳米管的产率随着裂解温度的变化而改变 .Fe MgO催化剂制备碳纳米管的产率随制备温度的升高而提高 ,而Ni MgO催化剂制备碳纳米管的产率随制备温度的升高而降低 .Fe MgO催化剂制备碳纳米管 ,在10 73K甚至更高的制备温度才能达到其最高产率 .Co MgO催化剂制备碳纳米管的产率在 973K左右产率较高 ,而用Ni MgO催化剂制备碳纳米管 ,则在 873K甚至更低的制备温度就能达到最高产率 .反应时间与碳纳米管的产率不成正比 ,有一最佳反应时间 ,如Ni MgO催化剂的最佳反应时间为 2h .  相似文献   
3.
RuH2和RuN2电子组态与光谱性质的从头计算   总被引:4,自引:0,他引:4       下载免费PDF全文
用量子化学从头算方法在B3LYP/6 311G 的水平上 ,研究了RuH2 和RuN2 可能的电子组态和光谱性质 .结果表明 ,RuH2 的3 B2 和5Σ-态对应于静电作用的物理吸附态 .RuN2 的一重态和三重态的计算结果跟钌单晶面上的实验值相接近 .而RuN2 在C∞v对称性时 ,五重态5Σ-的计算频率比实验值稍低 .在C2v对称性时 ,五重态的计算频率值则更低 ,3 B2 和5A1态不能稳定存在  相似文献   
4.
1940年前后,我还是个京都大学学生的时候,量子力学才诞生不过15年左右。大学讲义或书刊中跟量子力学有关的內容还非常少。直到那个时候,化学这一门学科给人们的强烈感觉还是:如果不进行实验,就什么也不清楚。因此,从那时起,我就  相似文献   
5.
催化剂设计浅谈   总被引:4,自引:0,他引:4  
前言虽然催化作用这一术语是柏尔采留斯(Be-rzelius)1836年才引入的,但是,早在远古时代,人们就已应用现在称之为酶的生物催化剂来制醋酿酒了。从十七世纪创立化学学科的科学  相似文献   
6.
采用杂化密度泛函(DFT)之B3LYP/6-311G**方法研究了NxHy-Fe(x=0~2,y=0~3)配位簇的几何结构和振动光谱,讨论了在纯铁催化剂上,氮分子和氢分子逐步合成氨的反应机理,结果表明,合成氨过程可能经历N2和N2H2物种,在优化结构的基础上,计算了各个模型的振动频率并解释了有关实验结果。  相似文献   
7.
合成甲醇的催化剂Rh-ZnO/MWNTs的研究   总被引:2,自引:0,他引:2  
研究新型的由多壁碳纳米管(MWNTs)负载的, ZnO助催的铑基甲醇合成催化剂. 当铑含量达到4%(w)时,催化剂具有较高的比表面积(99.6 m2•g-1), 催化剂的反应活化能为68.8 kJ•mol-1.在563 K, 1 MPa下,催化剂的最高催化活性和甲醇选择性分别为411.4 mg/gcat.•h和96.7%. TEM、TPR和TPD等表征结果显示,碳纳米管能增加Rh在催化剂表面的分散度,提高催化剂的还原温度并能增加氢物种的吸附量,这些结果将有助于更好地了解催化剂中各组分间的协同作用和催化活性中心本质.  相似文献   
8.
铁催化剂上化学吸附N_2的络合活化与加氢成氨   总被引:1,自引:0,他引:1  
关于Fe上N_2的络合活化,业已提出若干原子簇模型。基于所得到的现场动态互补红外与拉曼光谱的实验结果,进行了EHMO计算,以便从理论上比较化学吸附N_2的各种络合活化模式,并探测其加氢成氨的可能方式。 取α-Fe(111)面Fe_7原子簇及其络合活化的N_2为计算模型体系。模型-A为双端基加多侧基桥式对称平躺式,模型-B_1和B_2分别为单端基或准双端基加多侧基斜交式,模型-C为单端基加多侧基直插式。各模型中原子的相对位置如图1所示。根据实验结果,  相似文献   
9.
在B3LYP/6-311G(d,p)水平上,对氧原子簇O^yx(x=2-6,y=-1-2)的结构,能学与光谱性质进行了量子化学从头计算,对^3O2和^2O^+2的基态和激发 态进行了CASSCF计算。结果表明,氧分子及其离子 的体系总能量大小为^3O2(^3Σ g^-)<^2O2-(2 Ⅱgi)<^1O2(^1△g)<^1O2^-2(^1Σg^+)<^2O2^+(^2Ⅱg)<^1O2^+2(^1Σg^+).活性的二重态氧分子负离子^2O2^-(2Ⅱgi)在相对能量上只比三重态 的中性氧分子^3O2(^3Σ G^-)高25kJ/mol。对于弯曲型(StructrueⅠ)的臭氧分子(O3)及其离子,其体系总能量相对次序为^2O3^-(^2B1)<^1O3(^1A1)<^3O3(^3B2)<^1O3^-2(^1A1)<^2O3^+(^2A1).氧 四聚体(O4)及其离子的体系总能量相对大小为^2O4^-(C8弯曲型,^2A‘)<^2O4(D2v面心三角型,^2A2)<^2O4^-(D ∞h直线型,^2Σg)<^1O4( Cs弯曲型,^1A‘)<^1O4(F∞h直线型,^1Σg)<^1O4(D4h正方型,^1A1g)<^1O4(C2v面心三角型,^1A1)<^O4^-(D4h正方型,×1A1)<^2O4^+(D∞h直线型,^2Σg)<^2O4^+(C8弯曲型,×1A、)。相对能量最低的氧四聚体物种是呈椅形的带一个负电荷的负离子^2O4^-(C8弯曲型,^2A‘),其和持征振动频率应出现在1179和1349cm^-1。共面三角双锥型的^1O5(C2v ,^1A1)相对能量量最低,其与A 字型(C2v,^1A1) 可能是共振构型,特征振动频率位于1302cm^-1。氧六聚体(O6)的六边型构型的相对能量较低,其振动频率的红外强度很弱,但从其对称性看,应具有较强的拉曼强度。以B3LYP/6-311G(d,p)方法计算、并经0.9614因子校正的氧分子及其离子的O-O的夺动频率与实验值相当吻合。  相似文献   
10.
用旋光度法测定蔗糖转化反应速率常数是最基本的物理化学实验之一。该实验中的旋光管操作比较麻烦,且易引入实验误差。本文对该实验使用的旋光管进行了改进。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号