首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
  国内免费   6篇
化学   3篇
物理学   5篇
  2022年   1篇
  2018年   1篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
将线性三原子分子离子CS2+的对称伸缩振动简化为SC和S之间的简谐振动, 用谐振子的势能曲线和波函数对CS2+分子离子 C2Σg+和 B2Σu+电子态(对称伸缩)振动能级间跃迁的Franck-Condon因子进行了计算, 得到的结果与 C2Σg+←B2Σu+跃迁的光解离谱实验强度进行了比较, 对前人给出的分子数据(转动常数、分子平衡核间距)进行了验证和分析, 讨论了经由 C2Σg+←B2Σu+电子态振动能级间跃迁的光解离机理.  相似文献   
2.
Jian-Min Wu 《中国物理 B》2022,31(5):57803-057803
Monolayer transition metal dichalcogenides favor the formation of a variety of excitonic quasiparticles, and can serve as an ideal material for exploring room-temperature many-body effects in two-dimensional systems. Here, using mechanically exfoliated monolayer WS2 and photoluminescence (PL) spectroscopy, exciton emission peaks are confirmed through temperature-dependent and electric-field-tuned PL spectroscopy. The dependence of exciton concentration on the excitation power density at room temperature is quantitatively analyzed. Exciton concentrations covering four orders of magnitude are divided into three stages. Within the low carrier concentration stage, the system is dominated by excitons, with a small fraction of trions and localized excitons. At the high carrier concentration stage, the localized exciton emission from defects coincides with the emission peak position of trions, resulting in broad spectral characteristics at room temperature.  相似文献   
3.
Bandgap engineering of semiconductor nanomaterials is critical for their applications in nanoelectronics, optoelectronics, and photonics. Here we report, for the first time, the growth of single-crystalline quaternary alloyed Ga_(0.75)In_(0.25)As_(0.49)Sb_(0.51) nanowires via a chemical-vapor-deposition method. The synthesized nanowires have a uniform composition distribution along the growth direction, with a zinc-blende structure. In the photoluminescence investigation,these quaternary alloyed semiconductor nanowires show a strong band edge light emission at 1950 nm(0.636 e V). Photodetectors based on these alloy nanowires show a strong light response in the near-infrared region(980 nm) with the external quantum efficiency of 2.0 × 10~4% and the responsivity of 158 A/W. These novel near-infrared photodetectors may find promising applications in integrated infrared photodetection, information communication, and processing.  相似文献   
4.
用483.2nm的电离激光使CS2分子经由[3+1]REMPI制备出CS2^+(X^∽2Пg,3/2)后,在270~285nm扫描解离激光获得了CS2^+经由B^∽2∑u^+←X^∽2Пg,3/2跃迁的光倒空和光碎片激发谱,由此给出了B^∽2∑u^+电子态的振动频率ν1=613cm^-1和2ν2=707cm^-1。分析表明,正是CS2^+的[1+1]双光子光激发解离过程导致了母体离子CS2^+的光倒空和光解离成碎片离子CS^+和S^+,该过程中光碎片离子的分支比CS^+/S^+大约为3.  相似文献   
5.
将线性三原子分子离子CS2 的对称伸缩振动简化为SC和S之间的简谐振动,用谐振子的势能曲线和波函数对CS2 分子离子2∑g 和2∑u 电子态(对称伸缩)振动能级间跃迁的Franck-Condon因子进行了计算,得到的结果与2∑g ←2∑u 跃迁的光解离谱实验强度进行了比较,对前人给出的分子数据(转动常数、分子平衡核间距)进行了验证和分析,讨论了经由2∑g ←2∑u 电子态振动能级间跃迁的光解离机理.  相似文献   
6.
在射流气束条件下 ,利用第一束 4 83.2nm的电离激光使中性CS2 分子通过 (3+1)共振增强多光子电离 (REMPI)制备出纯净的CS2 + 分子离子 ;用第二束解离激光在 385~ 4 35nm扫描 ,由获得的光解离碎片激发(PHOFEX)谱研究了光解CS2 + 产生CS+ 的两种动力学途径 .当第一束电离激光和第二束解离激光在时间上有约6 0ns的延迟 (远大于激光脉宽约 5ns)时 ,光解CS2 + 母体离子产生CS+ 碎片离子有明显的阈值效应 ,由PHOFEX谱确定了CS+ 的绝热出现势 (5 .85 2± 0 .0 0 5 )eV (从CS2 + 的 X 2 Πg ,3 / 2 (0 ,0 ,0 )能级位置算起 ) ,测量了 4 72 0 0~5 0 4 0 0cm-1双光子能量范围内碎片离子的分支比CS+ /S+ (从 0逐渐增加到略大于 1) .提出了这种情况下CS2 +产生CS+ 碎片离子的 [1+1]共振增强多光子解离机理 :通过单光子激发产生CS2 + ( X 2 Πg)→CS2 + ( 2 Πu)跃迁、 和 X高振动能级耦合使得可以产生到CS2 + ( B2 Σ+ u)的单光子跃迁 ,再经由 B态与4Σ-和2 Σ-排斥态耦合使CS2 + 解离为CS+ (X2 Σ+ )和S(3 P) .但是 ,当电离激光和解离激光时间上重合时 ,不再能分辨出CS+ 的出现阈值 .这表明 ,除了存在着上述的产生CS+ 的 [1+1]共振增强多光子解离机理外 ,在激光波长长于 4 2 3.8nm时还存在着 [1+1+1’]、[1+1  相似文献   
7.
将线性三原子分子离子CS+2的对称伸缩振动简化为SC和S之间的简谐振动,用谐振子的势能曲线和波函数对CS+2分子离子(~C)2∑+g和(~B)2∑+u电子态(对称伸缩)振动能级间跃迁的Franck-Condon因子进行了计算,得到的结果与(~C)2∑+g←(~B)2∑+u跃迁的光解离谱实验强度进行了比较,对前人给出的分子数据(转动常数、分子平衡核间距)进行了验证和分析,讨论了经由(~C)2∑+g←(~B)2∑+g电子态振动能级间跃迁的光解离机理.  相似文献   
8.
用483.2nm的电离激光使CS2分子经由[3+1]REMPI制备出CS2+(X~2Πg,3/2)后,在270~285nm扫描解离激光获得了CS2+经由~B2Σu+←X~2Πg,3/2跃迁的光倒空和光碎片激发谱,由此给出了CS2+~B2Σu+电子态的振动频率ν1=613cm-1和2ν2=707cm-1.分析表明,正是CS2+的[1+1]双光子光激发解离过程导致了母体离子CS2+的光倒空和光解离成碎片离子CS+和S+,该过程中光碎片离子的分支比CS+/S+大约为3.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号