首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   6篇
化学   1篇
物理学   5篇
  2022年   2篇
  2021年   2篇
  2017年   1篇
  2016年   1篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
应用高精度的多态完全活化自洽场二级微扰理论方法, 在量子力学/分子力学组合方法的理论框架 QM(MS-CASPT2//CASSCF)/MM下, 系统研究了DNA环境中2-硒和4-硒取代胸腺嘧啶和腺嘌呤碱基对(2SeT-A和4SeT-A)的最低5个电子态(S0, S1, S2, T2和T1)的结构、 性质和光物理过程. QM(MS-CASPT2//CASSCF)/MM计算揭示了DNA环境中2SeT-A和4SeT-A碱基对激发态性质和光物理过程差异性的来源, 提出的机理将有助于理解DNA类似物的光物理过程, 在光动力学治疗中具有潜在的应用.  相似文献   
2.
本文采用基于多体格林函数方法和Bethe-Salpeter方程(GW/BSE)的电子结构计算方法和非绝热动力学模拟研究了两种不同桥连化学键构型(5-6构型和6-6构型)的酞菁锌-富勒烯(ZnPc-C60)给受体复合物的激发态性质及其弛豫过程. 对于6-6构型,ZnPc-C60的最低激发态S1态为光谱明态,即ZnPc的局域激发(LE)态,因此,6-6构型的ZnPc-C60在光激发之后几乎不会发生电荷分离过程. 相比之下,5-6构型的ZnPc-C60的S1态是C60的LE态,为光谱暗态,而作为光谱明态的ZnPc的LE态的能量更高. 而且,在ZnPc和C60的LE态之间还存在若干电荷转移(CT)态. 因此,电荷转移会在从高能的ZnPc的LE态到低能的C60的LE态的弛豫过程中发生. GW/BSE级别的非绝热动力学模拟结果进一步验证了电子结构计算的结论,并给出了相关过程的时间尺度:从ZnPc到C60的超快激发态能量转移过程在前200 fs完成;随后发生的是由C60到ZnPc的超快空穴转移过程. 本工作表明不同的桥连化学键模式(即5-6和6-6构型)可用于调节ZnPc-C60给体-受体复合物的激发态性质及其光电性质. 与此同时,本工作证明了GW/BSE级别的非绝热动力学方法是探索非周期性给体-受体复合物、有机金属配合物、量子点、纳米团簇等复杂体系的光诱导动力学的可靠工具.  相似文献   
3.
激发态双质子转移反应长期困扰着理论和实验科学家并成为了一个悬而未决的热点问题. 本文利用完全活化空间自洽场方法及其二阶微扰理论(MS-CASPT2//CASSCF)系统地研究了典型体系1,8-二羟基-2-萘甲醛(DHNA)的激发态双质子转移反应以及相关的激发态弛豫过程. 在MS-CASPT2//CASSCF水平下,本文优化了三个能量相近但结构不同的S1态互变异构体,即S1-ENOL、S1-KETO-1和S1-KETO-2,以及两个关键的S1/S0锥形交叉点结构,即S1S0-KETO-1和S1S0-KETO-2. 其中,两个极小点S1-KETO-1和S1-KETO-2与实验上观测到的双荧光发射现象密切相关. 本文还利用MS-CASPT2//CASSCF方法计算了双质子转移反应的二维势能面以及从极小点到交叉点结构的线性内插路径;相应计算结果证实了DHNA体系具有分步的激发态双质子转移机制. 具体来说,从S1-ENOL到S1-KETO-1的第一个质子转移过程是无能垒的,而从S1-KETO-1到S1-KETO-2的第二个质子转移过程则需要克服一个大约6.0 kcal/mol的能垒. 此外,由于从S1-KETO-1 (S1-KETO-2)到S1S0-KETO-1 (S1S0-KETO-2)的线性内插路径显示DHNA体系需要翻越一个约为12.0 kcal/mol的能垒,因此DHNA体系将在S1态上停留一段时间并发生双荧光发射现象. 当然,S1/S0锥形交叉点也会促使DHNA体系从S1态内转换到S0态,而这会一定程度上降低DHNA体系发射荧光的效率. 可以通过限制C5-C8-C9-O10二面角旋转来降低体系的内转换效率,进而提高DHNA体系的发光效率. 本工作不仅有助于理解激发态双质子转移机制,还有助于设计具有优异发光性能的新型分子材料.  相似文献   
4.
Herein we have employed the MS-CASPT2//CASSCF method to study the S1 excited-state intramolecular proton transfers (ESIPTs) of recently synthesized ortho-hydroxyl GFP core chromophores, i.e. OHIM, CHBDI, and MHBID, and their excited-state relaxation pathways. We have found that in OHIM and CHBDI, the ESIPT process is associated with small barriers of 3.4 and 4.2 kcal/mol; while, in MHBDI, it becomes essentially barrierless. Moreover, we have found two main S1 excited-state radiationless channels. In the first one, the enol S1 species decays to the S0 state via the enol S1/S0 conical intersection after overcoming considerable barriers of 7.0 and 7.7 kcal/mol in OHIM and CHBDI (however, in MHBDI, it is nearly barrierless). In the second one, the keto S1 species is first generated through the ESIPT event; then, it is de-excited into the S0 state in the vicinity of the keto S1/S0 conical intersection. These energetically allowed excited-state decay channels rationalize experimentally observed ultralow fluorescence quantum yields. The insights gained from the present work may help to guide the design of new ortho-hydroxyl GFP core chromophores with improved fluorescence emission and brightness.  相似文献   
5.
利用高精度的CASSCF和MS-CASPT2电子结构计算方法系统地研究了2-(2'-羟基苯基)-4-甲基噁唑的光物理和光化学机理. 在CASSCF级别,首先优化得到势能面极小结构和圆锥交叉结构,及激发态质子转移、异构化、和失活的极小能量路径. 然后用MS-CASPT2方法对所有得到的结构和能量路径进行单点能量校正,我们发现在含有OH…N氢键的构象异构体中,激发态质子转移基本上是一个无垒的过程;在含OH…O 氢键的构象异构体中,激发态质子转移被抑制了. 此外,找到两个能量较低的酮式S1/S0圆锥交叉结构,使得激发态质子转移生成的S1酮式结构可以很快失活到达基态. 但是,醇式S1/S0圆锥交叉结构能量较高,抑制了S1醇式结构的激发态失活.  相似文献   
6.
充分理解给体-受体复合物的激发态动力学在实验和理论上都具有非常重要的意义. 本文首次结合电子结构计算和非绝热动力学模拟,探索了最近合成的一个桨-轮形状的给体-受体复合物的光致动力学过程,该复合物由三个氟硼二吡咯基团和一个六氧杂并三苯构成. 根据计算结果,得出结论,桨-轮形状的给体-受体复合物共轭物在激发时将被提升到氟硼二吡咯片段的局部激发状态,然后发生超快局部激发电子态到电荷转移电子态的激子转移. 与先前实验工作中提出的光致电子转移机理不同,这种激子转移过程伴随着从氟硼二吡咯基团到六氧杂并三苯基团上的空穴. 此外,还发现溶剂效应在该体系的光致动力学中起着重要作用. 具体而言,强极性的乙腈溶剂加速了空穴转移动力学,这可以归因于溶剂对电荷转移状态的显著影响,即局部激发和电荷转移激子之间的能隙大大减小,而与此同时非绝热耦合增加,这两个因素都可以促进空穴转移过程. 目前的工作不仅为桨-轮形状的给体-受体复合物的潜在光诱导机制提供了有价值的见解,而且有助于未来设计具有更好光电性能的新型给体-受体复合物.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号