首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  国内免费   4篇
  完全免费   5篇
  物理学   9篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
C78O异构体的电子结构和光谱   总被引:1,自引:0,他引:1       下载免费PDF全文
为了模拟C78单加成物的加成位置和稳定性,并预测其光谱性质,用INDO系列方法对基于C2v-C78之上的C78O所有可能的34个异构体结构和电子光谱进行理论研究.结果表明,C78O的最稳定异构体是O加在位于C2v-C78短轴上的73,78-键上且形成环氧结构的6/6异构体,O的原子轨道对73,78-C78O中的HOMO能量降低起重要作用.讨论了电子跃迁性质和73,78-C78O电子光谱的长波吸收峰与母体相比发生蓝移的原因.  相似文献
2.
本文介绍了在EBIT中,使用狭缝为电子束成像的过程.同时论述了对采集的像的修正和计算分析,以及对于采集图像和数据分析中存在的误差的分析.从而计算得到EBIT电子束的束流密度.并且讨论了在计算模拟中,针对EBIT和本实验所需要的一些特别设定.  相似文献
3.
用半经验AM1方法对苝二酸酐与嘧啶衍生物的1∶1及1∶2氢键复合物进行理论研究,表明随着氢键数目增多,弱相互作用能变大,主体上的供电基和客体上的吸电基有利于氢键相互作用,氢键导致电子从主体流向客体。用INDO/SCI方法计算配合物的电子光谱,表明其长波吸收峰与主体相比发生兰移,各配合物的长波吸收峰位置相差不大,与实验一致。讨论吸收峰兰移的原因并对电子跃迁进行理论指认,同时得到了配合物的双质子转移势能曲线,给出了相对于N-H键的过渡态和活化能。  相似文献
4.
本文介绍了在EBIT中,使用狭缝为电子束成像的过程.同时论述了对采集的像的修正和计算分析,以及对于采集图像和数据分析中存在的误差的分析.从而计算得到EBIT电子束的束流密度.并且讨论了在计算模拟中,针对EBIT和本实验所需要的一些特别设定.  相似文献
5.
用半经验AM1和INDO/CIS方法及密度泛函方法在C2v-C78基础上研究了C78O5可能异构体的平衡构型和光谱性质.C78O5的最稳定异构体是具有一个轮烯和四个环氧结构的异构体28,29,30,31,52,53,70,71,73,78-C78O5(A).C78O5异构体电子光谱与C2v-C78相比将发生蓝移,并讨论了蓝移的原因,并对电子跃迁进行指认.基于B3LYP/6-31G优化构型,用AM1和B3LYP/6-31G方法探讨了C78O5的IR和NMR谱.  相似文献
6.
用INDO方法对C76BN的22种可能异构体进行较系统的理论研究,表明最稳定的两种异构体52,53-C76BN和29,28-C76BN是B和N直接相连并位于C78(C2v)椭球长轴附近的6/6键上;用INDO/SCI方法计算C76BN的电子光谱表明,其长波吸收峰与C78(C2v)相比发生红移.用AM1方法对C76BN的四种稳定异构体进行构型优化及红外光谱研究表明,BN单元的取代削弱C原子之间的共轭而使红外频率变小.  相似文献
7.
用半经验AM1方法对苝二酸酐与嘧啶衍生物的1:1及1:2氢键复合物进行理论研究,表明随着氢键数目增多,弱相互作用能变大,主体上的供电基和客体上的吸电基有利于氢键相互作用,氢键导致电子从主体流向客体.用INDO/SCI方法计算配合物的电子光谱,表明其长波吸收峰与主体相比发生兰移,各配合物的长波吸收峰位置相差不大,与实验一致.讨论吸收峰兰移的原因并对电子跃迁进行理论指认,同时得到了配合物的双质子转移势能曲线,给出了相对于N-H键的过渡态和活化能.  相似文献
8.
用INDO系列方法对C78(C2V)的等电子体C77N+的所有21种可能异构体进行系统的理论研究.研究结果表明,最稳定异构体是由C78(C2V)沿Y方向椭球短轴所穿过的C(78)-C(73)键上的原子C(78)被N+取代所形成,椭球长轴附近的原子被取代所形成的异构体能量较低,取代位置附近易成为进一步反应的中心.用INDO/SCI方法计算了C77N+电子光谱,表明其吸收峰与C78(C2V)相比发生红移,对特征吸收峰进行了理论指认,讨论吸收峰红移的原因.  相似文献
9.
用INDO系列方法研究C80n(D2,Ih)的Jahn-Teller畸变,表明C80(D2)比C80(Ih)稳定,与实验一致;C80n(D2)未发生Jahn-Teller畸变,C80n(Ih)的部分离子发生明显的Jahn-Teller畸变,电荷对C80(Ih)稳定性有显著影响.首次计算其电子光谱,不仅得到C80(D2)与实验一致的吸收峰,还预测了C80n(D2,Ih)的电子光谱,对电子跃迁进行理论指认.C80n(D2)光谱与C80(D2)相比发生吸收峰红移,而C80n(Ih)光谱与C80(Ih)相比发生吸收峰兰移,其原因是C80n(D2)的LUMO-HOMO能隙比C80(D2)小,而C80n(Ih)的能隙则比C80(Ih)的能隙大.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号