首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   2篇
物理学   4篇
  2018年   1篇
  2017年   2篇
  2015年   3篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
光谱颜色复现和色度精度是评价光谱重建算法准确的基础。简单而直观的评价指标对颜色复现控制是必不可少。该指标需要同时表征复现颜色的光谱差和色度差。在研究光谱匹配评估的方法基础上,提出基于颜色视觉感知的三种光谱评估指标,通过加权人眼视觉匹配函数,实现颜色光谱差与色度的评估。通过孟塞尔颜色系统的光谱数据,该论文分析与验证三种视觉加权的评估指标的有效性。通过孟塞尔颜色系统数据,这些指标在CIELab均匀色空间中分布均匀而稳定,从而证明加权算法的评估指标是既表征到颜色感知又反映出颜色的光谱相似度。实证结果表明,加权的指标可以实现同时表征实际人眼的颜色感知和颜色光谱差异。基于人眼视觉感知的评估指标解决了颜色的原始光谱和重建光谱的光谱匹配精度的定量评价问题。所提出评价指标通过一个简单而直观的数值实现对复现颜色光谱与色度评估。  相似文献   
2.
对不同的半色调混合像元比例通过彩色喷墨打印机输出后的光谱反射率曲线的光谱形态特征进行了研究。选择反射光谱形态指标,分析了125组不同半色调混合比例下光谱混合像元反射光谱形态指标的变化规律。研究结果表明,半色调混合元的光谱形态指标与半色调混合像元的比例间存在明显的关系;选择分析的4个光谱形态指标之间存在着较大的相关性,按照0.05及以上置信水平和相关系数0.9的条件对光谱形态指标进行剔除,确定了不同基色不同特征波段中的有效光谱形态指标;在不同波段范围内,各光谱形态指标随半色调混合像元比例的变化规律存在差异性;使用回归分析,各基色特征波段的光谱形态指标与半色调混合比例符合一次线性与二次多项式关系,R~2可达到0.9以上。  相似文献   
3.
GA-BP神经网络结合PCA的多基色颜色预测模型   总被引:2,自引:0,他引:2  
颜色分区法是简化多基色颜色复制的主要方法,本研究以3基色为组将7基色色空间分成6个子空间,结合主成分分析(PCA)对分区内颜色样本的光谱反射率降维,通过3层BP神经网络,建立样本网点面积率与多基色复制色光谱反射率的转换模型,并通过遗传算法(GA)对神经网络权值阈值进行优化,提高多基色复制的颜色预测精度.实验结果表明,在各分区训练样本数为64、检测样本数为216时,GA-BP神经网络模型颜色预测的平均色差(△Eab*)为1.669,光谱均方根误差(RMSE)为0.7%,预测精度和稳定性均高于BP神经网络模型和胞元Neugebauer模型.最后,将训练样本数为64的GA-BP模型与训练样本数量为125,216,343的BP神经网络模型(平均△Eab*分别为3.267,2.776,2.175,光谱RMSE为0.97%,0.79%,0.76%)进行了比较,结果表明训练样本数为64的GA-BP模型的预测精度与训练样本数量为343的BP神经网络模型相当.GA-BP模型仅需少量样本即可实现高精度的颜色预测,在应用中具有良好的可移植性.  相似文献   
4.
传统主成分(PCA)光谱降维方法利用数学的方法,保证降维后的重构光谱与原光谱在形状上尽可能相似,但是传统PCA降维过程中无差别的对待每一个波段的光谱数据,而人眼视觉对不同波段的光谱敏感程度不同,会造成有时候虽然光谱误差较小,但是人眼看上去色差较大的情况.在保证光谱误差的同时,为了能够有效的减少源光谱与重构光谱的色度误差,提出了两种基于人眼视觉的加权函数对传统PCA降维方法进行优化,并利用残差光谱对模型进行补偿.实验过程以Munsell色卡作为训练样本,Munsell色卡和多光谱图像"young girl"作为测试样本,然后利用本文提出的加权函数进行PCA降维并重构,并与相关文献提出的方法进行了对比.实验结果表明,提出的两种加权算法,与其他算法相比,无论是色度精度还是在变光源的稳定性方面,都有显著地提高.  相似文献   
5.
本文提出一种基于RBF(Radial Basis Function,径向基函数)神经网络的打印机光谱预测模型,通过扩展神经网络模型输入变量的项数提高模型的预测精度,扩展项多采用通道驱动值的交叉值、平方值。实验结果表明[1cmy]项的引入能够有效提高模型的预测精度,同时提高网络的泛化能力。而引入[cm2 cy2 mc2 my2 yc2 ym2]项会导致模型预测精度以及泛化能力降低。[1cmy]、[c2 m2y2]和[cm cy my]项的组合在预测精度和模型泛化能力上均是最优化的,对总样本预测的色度精度为0.475ΔE00,光谱精度RMSE为0.43%。因此选择[1cmy c2 m2y2 cm cy my c m y]作为输入变量的RBF神经网络训练模型是满足高精度光谱预测的最优模型。  相似文献   
6.
为了实现扫描仪在不同光源、不同观察者条件下准确获取颜色信息,最大程度的避免同色异谱现象,本文采用光谱的方法对扫描仪进行特性化处理,通过多项式回归和BP神经网络分别与主成分分析法结合,首先对检测样本的光谱反射率进行主成分分析,提取主成分与主成分系数,通过实验得到主成分系数与多项式回归、BP神经网络结构之间的转换模型,实现了扫描仪低维RGB信号对原始光谱反射率信息的重构,进而实现扫描仪的光谱特性化。实验结果表明,多项式项数为19项时,达到训练样本的均方根误差为1.7%,检测样本的均方根误差为1.9%。而包含15个隐层节点的单隐层BP神经网络结构为比较合理的网络结构,达到训练样本的均方根误差为1.3%,检测样本的均方根误差为1.5%。对彩色扫描仪的特征化处理,采用多项式回归法得到光谱特性化精度较低,采用BP神经网络模型能够实现更高的光谱特性化精度。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号