首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  国内免费   6篇
化学   10篇
物理学   3篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2017年   1篇
  2014年   2篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有13条查询结果,搜索用时 109 毫秒
1.
基于鲁米诺(luminol) 化学发光体系,采用自主研发的在线臭氧浓度检测仪,建立了一种实时在线检测臭氧浓度的方法,用于分析测定痕量浓度水平的臭氧气体。 考察了鲁米诺、氢氧化钾、部分醇类化合物和表面活性剂等因素对化学发光强度的影响。 结果表明,在鲁米诺(0.005 mol/L)、氢氧化钾(0.05 mol/L)体系中加入乙二醇(体积分数1.5%)、甲醇(体积分数1.5%)、乙醇(体积分数1.0%)、丙三醇(体积分数3.0%)能显著增强鲁米诺体系检测O3的化学发光信号,而甲醛溶液 (体积分数3.0%)能有效抑制NO2信号的干扰。 同时,测得检测臭氧的检出限为1.26 μg/m3、相对标准偏差为0.32%,相对误差为0.75%。 利用该体系测定臭氧,具有信号稳定、精密度好、准确度高、检出限低等优点,适用于大气中微量O3的在线连续检测。  相似文献   
2.
采用CCSD(T)/aug-cc-pVTZ//B3LYP/6-311+G(2df,2p)方法对HO2+H2S反应及单分子水参与其主通道的微观机理和速率常数进行了研究.结果表明,HO2+H2S反应主通道为生成产物为H2O2+HS的通道,其表观活化能为14.94 kJ/mol.考虑单分子水对主产物通道的影响发现,所得的势能面比无水参与的反应复杂得多,经历了H2O…HO2+H2S(RW1),HO2…H2O+H2S(RW2)和H2O…H2S+HO2(RW3)3个通道,RW1~RW6共6个路径.其中通道RW1是水分子参与HO2+H2S反应主通道的优势通道.在216.7~298.2K温度范围内通道RW1的有效速率常数呈现出正温度系数效应,在298 K时,k’RW 1/ktotal达到54.2%,表明在实际大气环境中水分子对HO2+H2S反应的主通道具有明显影响.  相似文献   
3.
采用连续可调谐二极管半导体激光器为探测光源,以可调怀特型长光程多通池(46.36~1158.90m)作为吸收池,采用直接吸收的方法,探测了室温下1.65μm附近CH4分子的高分辨率吸收光谱。在6043.00~6053.72cm-1范围内探测了5组不同压力和光程下的吸收光谱,观测到了259条线新的CH4分子吸收谱线,实验数据用Gaussian线型进行拟合,得到了这些吸收谱线的线强、线位置以及线强的标准偏差值,并对光谱中难以分辨的吸收谱线进行了分析。探测得到的最小谱线线强是4.3×10-27cm-1·(molcule·cm-2)-1,吸收谱线线强大于3.0×10-24cm-1·(mol·cm-2)-1由于吸收饱和而未被处理,同时所测得的光谱也显示出CH4分子在1.65μm附近有非常丰富的弱吸收谱线和复杂的结构。文中所报道的吸收谱线都是HITRAN2004数据库中所未报道的,而且也未见有其他文献报道过。  相似文献   
4.
采用一步溶剂热法合成了能够发射绿色荧光的水溶性碳量子点(CDs),并对其进行了透射电子显微镜(TEM)、紫外可见光谱、荧光光谱以及红外谱图等一系列表征。基于该CDs增强的H_(2)O_(2)-KOH-CO_(2)气液相化学发光体系,利用自助研发的气液相化学发光检测仪实现了对CO_(2)气体的实时在线检测。研究了H_(2)O_(2)、KOH以及CDs浓度对发光强度的影响,结果表明当H_(2)O_(2)浓度为0.15 mol/L、KOH浓度为0.40 mol/L以及CDs溶液与KOH溶液体积比为1∶2时所测得的化学发光强度最大。在最优条件下,在0.196~49 mg/L范围内,CO_(2)浓度与发光强度呈现出良好的线性关系;计算得到二氧化碳的检测限为0.049 mg/L;重复检测11次1.96和4.56 mg/L的CO_(2)的相对标准偏差分别为1.46%和0.65%。采用该方法检测CO_(2)具有灵敏度高、选择性好、精密度高以及能够实现连续在线检测等优点。  相似文献   
5.
在线二氧化氮化学发光测定仪的研制   总被引:2,自引:1,他引:1  
基于NO2与鲁米诺溶液的化学发光反应设计制作了在线NO2的化学发光测定仪,并对此仪器进行了优化和表征。仪器由微型流动气液界面化学发光反应器、气液输运系统、化学发光检测系统及数据采集系统组成。此仪器测定NO2的线性范围为5.0×10-11~8.0×10-8(V/V,体积比浓度,下同);峰值响应时间少于1s;时间分辨1s;检出限为5.0×10-11(V/V)。本仪器具有结构简单、体积小、成本低等特点,适用于环境大气中NO2的实时在线测定。  相似文献   
6.
稳定同位素比值的测量在地质学、气象学和地球科学的研究中具有蕈要的应用价值.水汽同位素丰度的测量对理解与干旱相关的同温层大气科学具有重要的意义.水汽分子在2.7 μm附近具有较强的吸收,适宜于高灵敏度光谱的测量.文章报道了利用差频技术(Difference frequency generation)和准相位匹配技术(Quasi-phase matching),将调}皆范围在750~840 nm之间的连续可调谐钛宝石激光器和单频连续的Nd:YAG敫光器,耦合到周期性极化铌酸锂非线性光学晶体中,产生2.5~4 μn波段的中红外可调谐激光.选择周期为20μm的PPLN品体,产生2.7 μm附近的中红外差频激光,利用差频产生的中红外激光光源,具有窄线宽、宽调谐等优点.结合光程为100 m的Herriott型多通吸收池,采用直接吸收光谱方法测量了实验窒大气中的水汽分子同位素,得到了同位素比值R及~(17)O,~(18)O,D的丰度值δ,实验所测R值与国际标准具有很好的一致性.  相似文献   
7.
聚偏氟乙烯(PVDF)膜材料存在强疏水性的缺陷,亲水化改性是解决该问题的主要途径。以PVDF为基膜材料、聚乙烯醇(PVA)为共混材料、N,N-二甲基乙酰胺(DMAc)为溶剂,采用相转化法制备PVDF/PVA复合膜。考察了复合膜的PVDF/PVA共混比、固含量、低分子化合物添加剂、聚合物添加剂等非溶剂添加剂对复合膜接触角的影响。结果表明,当PVDF/PVA共混比为7/3,固含量为13%时,制备的复合膜接触角为22.92°;当添加剂为无水氯化锂、纳米二氧化硅、聚乙烯吡咯烷酮(PVP)时,复合膜接触角分别从53.12°、30.51°和41.89°都降低到了0°,亲水性提高,其中纳米二氧化硅作为添加剂时复合膜亲水性最好;当添加剂为丙三醇、PMMA、PEG时,复合膜接触角都增大,亲水性变差。  相似文献   
8.
本文在CCSD(T)/aug-cc-pVTZ//M06-2X/6-311+G(3d,2p)水平上构建了HO_2与HONO及其异构体的反应势能剖面,并对各通道的速率常数进行了计算。结果表明,HONO存在cis-HONO、trans-HONO、HNO_2三种不同的异构体,其中HNO_2是最稳定的构型。HNO_2+HO_2反应(R3)能垒比其他两个反应(R1(cisHONO+HO_2)和R2(trans-HONO+HO_2))的能垒降低了8. 2~13. 8 kcal·mol~(-1)。采用传统过渡态理论结合Wigner校正对各反应在240~425 K范围内的速率常数进行了计算。结果表明,反应R3的速率常数比R1和R2的对应值大4~9个数量级,表明HO_2+HONO及其异构体的抽氢反应的速率主要取决于HNO_2+HO_2反应。  相似文献   
9.
带电粒子在电磁场中的运动是高考的一个重要内容,因为该理论经常被用到现代科技和生产生活中.高考试题主要考查学生对带电粒子在电场中和磁场中的受力分析及对物体运动情况的判断.试题经常以电场和磁场叠加的形式出现,也就是所谓的“复合场”.2011年普通高等学校招生全国统一考试理科综合能力测试Ⅱ卷第25题考查的就是带电粒子在复合场中的运动.但该题没有考虑清楚实际的物理情境,在电场的边界模型上出现了问题.  相似文献   
10.
在aug-cc-pVTZ基组下采用CCSD(T)和B3LYP方法,研究了H2O2+Cl反应,并考虑在大气中单个水分子对该反应的影响.结果表明,H2O2+Cl反应只存在一条生成产物为HO2+HCl的通道,其表观活化能为10.21kJ·mol-1.加入一分子水后,H2O2+Cl反应的产物并没有发生改变,但是所得势能面却比裸反应复杂得多,经历了RW1、RW2和RW3三条通道.水分子在通道RW1和RW2中对产物生成能垒的降低起显著的负催化作用,而在通道RW3中则起明显的正催化作用.利用经典过渡态理论(TST)并结合Wigner矫正模型计算了216.7-298.2 K温度范围内标题反应的速率常数.结果显示,298.2 K时通道R1的速率常数为1.60×10-13cm3·molecule-1·s-1,与所测实验值非常接近.此外,尽管通道RW3的速率常数kRW3比对应裸反应的速率常数kR1大了46.6-131倍,但该通道的有效速率常数k'RW3却比kR1小了10-14个数量级,表明在实际大气环境中水分子对H2O2+Cl反应几乎没有影响.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号