首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   5篇
物理学   5篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2012年   1篇
  2008年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
微型射频离子推力器具有结构简单、工作寿命长、推力动态范围大、性能调节响应灵敏等特点,是国际微电推进领域的研究热点之一.射频离子推力器电离室内的感性耦合放电等离子体特性和推力器的性能密切相关.为此,文章建立了低气压、小尺寸微型射频离子推力器电离室内感性耦合等离子体流体模型,开展了电磁场、流场、化学反应浓度场的多物理场耦合仿真分析,并研究了等离子体放电特征参数随推进剂工质气压、放电吸收功率、射频频率以及线圈匝数等因素的变化规律.结果表明,推进剂工质气压、放电吸收功率是调节微型射频离子推力器性能的主要因素,该研究为综合调控微型射频离子推力器的工作性能奠定了良好的基础.   相似文献   
2.
在高超声速飞行和再入地球大气过程中, 气体分子的振动、电子态激发, 伴随离解、电离反应, 从而产生高温真实气体效应。不同数值方法对高温真实气体效应的模化会造成气体热物性参数的差异, 从而对流场模拟引入不确定度。以高超声速的双锥/双楔流动为例, 通过计算流体力学方法和直接模拟Monte Carlo (DSMC)方法, 研究高温真实气体模型对复杂干扰流动的预测能力。结果表明, 有别于量热完全气体, 若考虑真实物理过程的热化学非平衡过程带来气体热力学性质、输运特性的变化, 会导致激波角、边界层厚度、分离区尺寸等流动结构的改变。因此, 在研究高超声速模拟中应注意数值模型的正确应用。   相似文献   
3.
赵曰峰  王超  王伟宗  李莉  孙昊  邵涛  潘杰 《物理学报》2018,67(8):85202-085202
甲烷针-板放电与重油加氢耦合形成甲烷转化重油加氢,可实现重油高效加氢并增产高附加值低碳烯烃,有实践应用前景和科学研究意义.建立二维流体模型,对大气压甲烷针-板放电等离子体进行数值模拟,得到电场强度、电子温度和粒子密度的空间与轴向分布,总结反应产额并提炼生成各种带电和中性粒子的关键路径.模拟结果表明,CH_3~+和CH_4~+密度与电场强度和电子温度的轴向演化接近且密切相关;CH_5~+和C_2H_5~+密度沿轴向先增大后减小;CH_3与H密度的空间和轴向分布几乎相同;CH_2,C_2H_4与C_2H_5的粒子密度分布在靠近阴极的区域内明显不同而在正柱区内较为相像;电子与CH_4发生电子碰撞电离生成的CH_3~+和CH_4~+,CH_3~+和CH_4~+分别与CH_4发生分子碰撞解离生成C_2H_5~+和CH_5~+;电子与CH_4间的电子碰撞分解是生成CH_3,CH_2,CH和H的主导反应;CH_2与CH_4和电子与C_2H_4发生的反应分别是生成C_2H_4和C_2H_2的关键路径;电子与CH_4间的电子碰撞分解反应和CH_2与CH_4发生的反应的产额各占H_2总产额的52.15%和47.85%.  相似文献   
4.
王伟宗  吴翊  荣命哲  杨飞 《物理学报》2012,61(10):105201-105201
空气电弧等离子体的物性参数为空气电弧放电过程的仿真提供了可靠的微观理论基础和参数输入. 假定体系处于局域热力学平衡态, 基于Chapman-Enskog理论, 采用Sonine多项式三级展开(对黏滞系数采用二级展开) 得到的输运参数表达式, 数值计算得到了不同气压条件下(0.1 atm-20 atm, 1 atm = 1.01325×105 Pa)、 不同温度范围内(300-30000 K) 空气电弧等离子体的输运参数(扩散系数、黏滞系数、热导率、电导率). 与以往的理论研究相比, 最新的相互作用势和碰撞截面研究成果被应用到涉及粒子的碰撞积分计算中, 提高了输运参数计算结果的精度和可靠性.  相似文献   
5.
吴翊  荣命哲  杨飞  王小华  马强  王伟宗 《物理学报》2008,57(9):5761-5767
引入了6波段P-1辐射模型,对三维空气电弧等离子体进行了仿真分析.其特点是不仅考虑了热辐射的发射问题,同时考虑了等离子体内热辐射的自吸收问题.通过计算获得了空气电弧等离子体温度和辐射能量的分布并进行了相应的分析.与净辐射系数方法相比较,P-1模型获得的温度分布较宽,其弧柱电压值更接近于实验测量值.研究表明,6波段P-1辐射模型能够更精确地求解空气电弧等离子体的辐射问题. 关键词: 热辐射 P-1模型 空气电弧等离子体 磁流体动力学  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号