首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   1篇
物理学   1篇
  2020年   1篇
  2019年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
该文构建了玉米秸秆粗蛋白定量分析模型,并对光谱特征波段选取方法进行探讨及验证。首先对107个样本进行预处理,剔除两个异常样本后采用DB2小波缺省阈值4层分解方式进行光谱重构,预处理后粗蛋白模型交互验证决定系数R2CV从0.788 9提高至0.920 8,采用间隔偏最小二乘(IPLS)及其改进型方法后向区间间隔偏最小二乘(BIPLS)、组合间隔偏最小二乘(SIPLS)进行特征波段选取,并对比主成分分析、竞争性自适应重加权采样法、相关系数法、遗传算法、移动窗口最小二乘等结果,发现基于IPLS及其改进型BIPLS、SIPLS均可有效、准确定位特征波段区间,其中采用SIPLS 30 波段间隔在10 128~10 398 cm-1与11 196~11 462 cm-1时具有最优模型,验证集相关系数(rp)为0.978 4,验正集决定系数(R2P)为0.957 2,验正集均方误差根(RMSEP)为0.221 1,相比于其他波段选取方法表现出较好的实时准确性,该方法可为玉米秸秆氨碱化最优条件判定提供重要的数据支撑。  相似文献   
2.
基于高光谱成像的牧草粗蛋白含量检测研究   总被引:1,自引:0,他引:1  
粗蛋白(CP)是评价牧草营养价值和品质参数的关键指标。快速、准确地对牧草中粗蛋白含量进行评估在畜牧业生产研究中具有重要意义。为确定牧草粗蛋白含量的高光谱特征波段及最优检测模型,研究分别于2017年5月至9月间在黑龙江省杜尔伯特自治区的人工牧草场(羊草)内每月随机选取35个样本,5个月共采集175个样本。采样时在样本点处放置1 m×1 m的样方,将样方内所有牧草全部齐地面收割采集后称重并冷藏保存。将样本带回实验室后,立即进行牧草叶片高光谱图像采集,同时采用凯氏定氮法对采集的牧草样本进行粗蛋白化学值测定,以此建立牧草粗蛋白含量高光谱数据集。研究首先通过Savitzky-Golay卷积平滑(SG)、多元散射校正(MSC)、变量标准化(SNV)、一阶导数(1-Der)和直接正交信号校正(DOSC)方法5种预处理方法对高光谱数据进行处理后分别建立偏最小二乘回归(PLSR)检测模型,从中确定最优预处理方法。利用最优预处理结果,分别采用连续投影算法(SPA)和随机蛙跳算法(RF)进行牧草粗蛋白含量的特征波段选择,并利用选择结果分别进一步建立PLSR模型,以此确定适合粗蛋白含量的特征波段选择方法,确定最优高光谱检测模型。结果表明,在五种高光谱预处理方法中,基于SNV方法预处理后所建立的高光谱PLSR模型表现最优(R2-P=0.929,RMSE-P=6.344 mg·g-1,RPD=4.204)。利用连续投影算法筛选的粗蛋白含量特征波长为30个,分布于530~700和940~1 000 nm范围内。经随机蛙跳算法确定的粗蛋白含量特征波段为6个,分别为826.544,827.285,828.766,971.012,972.494和973.235 nm。因此,该研究中牧草粗蛋白含量最优高光谱检测模型为SNV-RF-PLSR(R2-P=0.933,RMSE-P=6.034 mg·g-1,RPD=4.322),模型精度较高。该研究结果为牧草粗蛋白含量的高光谱检测提供了最优模型和理论基础,同时为指导草业生产开拓了新的技术思路。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号