首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   9篇
晶体学   1篇
物理学   9篇
  2017年   1篇
  2011年   2篇
  2009年   2篇
  2008年   4篇
  2007年   1篇
排序方式: 共有10条查询结果,搜索用时 35 毫秒
1
1.
We have made a first principles study to investigate density of states, band structure, the dielectric function and absorption spectra of wurtzite Mg 0.25 Zn 0.75 O. The calculation is carried out in a-axis and c-axis strain changing in the range from 0.3 to -0.2 in intervals of 0.1. The results calculated from density of states show that the bottom of conduction band is always dominated by Zn 4s and the top of valence band is always dominated by O 2p in a-axis and c-axis strain. Zn 4s will shift to higher energy range when a-axis strain changes in the range from 0.3 to 0, and then shift to lower energy range when a-axis strain changes in the range from 0 to -0.2. But Zn 4s will always shift to higher energy range when c-axis strain changes in the range from 0.3 to -0.2. The variations of band gap calculated from band structure and absorption spectra are also investigated, which are consistent with the results obtained from density of states. In addition, we analyse and discuss the imaginary part of the dielectric function ε 2 .  相似文献   
2.
史力斌  李容兵  成爽  李明标 《物理学报》2009,58(9):6446-6452
采用基于密度泛函理论和平面波赝势技术的CASTEP程序对Zn1-xBexO合金电子结构和光学性质进行了计算.当0≤x≤1,其带隙从0.963 eV变化到7.293 eV.分析了晶格畸变和能带间排斥效应对带隙的影响.当Be含量x=0.125,0.25,0.375,0.5,0.625,0.75时,a/b轴压应变控制着带隙变化;当x=0.875,1时,c轴压应变控制着带隙变化.能带间的p-d排斥影响价带顶变动,Γ1vΓ1c之间排斥影响导带底变动.这些能带间的排斥效应被用来分析Zn1-xBexO带隙变动.另外,也分析了Zn1-xBexO介电函数虚部ε2. 关键词: 带结构 光学性质 应变 排斥  相似文献   
3.
李明标  张天羡  史力斌 《物理学报》2011,60(9):97504-097504
采用基于密度泛函理论(DFT)和局域密度近似(LDA)的第一性原理分析了氮掺杂(1120) ZnO 薄膜的磁性质.首先,研究了一个N原子掺杂ZnO薄膜的磁性质,结果表明N 2p,O 2p和Zn 3d 发生自发自旋极化.其次,研究了二个N原子掺杂ZnO薄膜的磁性质,9个不同几何结构的计算结果表明N原子之间具有FM耦合稳定性,而且具体分析了N掺杂ZnO铁磁稳定性的产生原因.最后,讨论了氮 关键词: 第一性原理 半导体 铁磁性  相似文献   
4.
基于第一性原理的密度泛函理论对NO2分子吸附在4d过渡金属掺杂的石墨烯体系进行了研究.发现Cd原子价电子构型为4d105s2,形成饱和结构,不容易掺入石墨烯体系.调查了三种NO2分子的吸附情况,分别是N原子、一个O原子、两个O原子靠近石墨烯体系吸附点.通过能量优化获得最稳定的吸附构型.通过吸附能、电荷转移等数据研究了各吸附构型对NO2的吸附情况.纯的石墨烯体系对NO2分子的吸附较弱,吸附能小于0.2 eV,而4d掺杂可以明显提高吸附体系的吸附性能,多数吸附能超过了2 eV.其中掺Nb原子对NO2吸附效果最好,且吸附构型较稳定,吸附能为3.686 eV.此外,通过比较吸附前后带隙的变化,可发现掺Zr原子,石墨烯体系由半导体转变为金属,而掺Nb原子,石墨烯体系由金属转变为半导体.  相似文献   
5.
利用标准的四引线方法研究了磁场平行和垂直于YBCO/MgO超导薄膜表面时的电阻转变.另外,本文采用微带谐振技术研究了该超导薄膜的微波性质.我们获得了该超导薄膜在绝对零度时的穿透深度λ0=280 nm,并且计算出了该超导薄膜的表面电阻,结果显示在60 K,7.78 GHz时Rs=78.2μΩ;在76 K,7.77 GHz时Rs=179.8 μΩ.  相似文献   
6.
YBa2Cu3O7-δ/LaAlO3 (YBCO/LAO) 超导薄膜是通过热蒸发沉积方法制备的,实验中使用的Tl2Ba2CaCu2O8/LaAlO3 (TBCCO/LAO) 超导薄膜是通过直流磁控溅射方法制备的.通过分析两片超导薄膜的XRD谱计算出了两片超导薄膜内的应变,ΔC关键词: YBCO/LAO TBCCO/LAO 超导薄膜 应变 表面电阻  相似文献   
7.
采用基于密度泛函理论(DFT)和局域密度近似(LDA)的第一性原理分析了氮掺杂(1120)ZnO薄膜的磁性质.首先,研究了一个N原子掺杂ZnO薄膜的磁性质,结果表明N2p,O2p和Zn3d发生自发自旋极化.其次,研究了二个N原子掺杂ZnO薄膜的磁性质,9个不同几何结构的计算结果表明N原子之间具有FM耦合稳定性,而且具体分析了N掺杂ZnO铁磁稳定性的产生原因.最后,讨论了氮掺杂ZnO磁交换系数和居里温度.计算结果表明N掺杂(1120)ZnO薄膜具有弱铁磁性.  相似文献   
8.
Double-sided superconducting MgB2 thin films are deposited onto c-A120a substrates by the hybrid physical chemical vapour deposition method. The microwave response of MgB2/A12O3 is investigated by microstrip resonator technique. A grain-size model is introduced to the theory of microstrip resonators to analyse microwave properties of the films. We obtain effective penetration depth of the films at OK (λe0 = 463nm) and surface resistance (R8 = 1.52 mΩ at 11 K and 8. 73 GHz) by analysing the resonant frequency and unload quality factor of the microstrip resonator, which suggests that the impurities and disorders of grain boundaries of MgB2/A12 Oa result in increasing penetration depth and surface resistance of the films.  相似文献   
9.
YBa2Cu3O7-δ/LaAlO3 (YBCO/LAO) 超导薄膜是通过热蒸发沉积方法制备的,实验中使用的Tl2Ba2CaCu2O8/LaAlO3 (TBCCO/LAO) 超导薄膜是通过直流磁控溅射方法制备的.通过分析两片超导薄膜的XRD谱计算出了两片超导薄膜内的应变,ΔC相似文献   
10.
YBa2Cu3O7-δ/LaAlO3 (YBCO/LAO) 超导薄膜是通过热蒸发沉积方法制备的,实验中使用的Tl2Ba2CaCu2O8/LaAlO3 (TBCCO/LAO) 超导薄膜是通过直流磁控溅射方法制备的.通过分析两片超导薄膜的XRD谱计算出了两片超导薄膜内的应变,ΔCY=4.8483×10-3;ΔCT=8.5272×10-5,结果显示YBCO超导薄膜内的应变要大于TBCCO超导薄膜内的应变.另外,采用共面谐振技术研究这两片超导薄膜内的微波表面电阻随温度的变化,结果表明YBCO超导薄膜具有更大的微波表面电阻.分析和讨论了应变对超导薄膜微波表面电阻的影响.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号