首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   3篇
物理学   5篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
根据激光驱动质子束流低发射度、短脉冲、单束团低电量的性质,研究腔式束流位置探测器(BPM)测量激光加速器产生的质子束团横向位置的可行性问题。针对质子束团的大横向分布和发散角问题,推导了其通过腔式BPM的输出信号,结果表明该信号与集中从束团对称中心、倾斜一定角度通过的束流产生的输出信号相同。依据上述原理,使用CST软件进行了腔式BPM的设计和仿真,确定了矩形谐振腔波导耦合的方案。讨论了该方案的腔式BPM对于激光加速束流的适用性和不同激光驱动质子束流参数的分辨率,并针对PW级激光加速系统进行了分辨率估算。  相似文献   
2.
Danqing Zhou 《中国物理 B》2021,30(11):116106-116106
Laser-accelerated ion beams (LIBs) have been increasingly applied in the field of material irradiation in recent years due to the unique properties of ultra-short beam duration, extremely high beam current, etc. Here we explore an application of using laser-accelerated ion beams to prepare graphene. The pulsed LIBs produced a great instantaneous beam current and thermal effect on the SiC samples with a shooting frequency of 1 Hz. In the experiment, we controlled the deposition dose by adjusting the number of shootings and the irradiating current by adjusting the distance between the sample and the ion source. During annealing at 1100 ℃, we found that the 190 shots ion beams allowed more carbon atoms to self-assemble into graphene than the 10 shots case. By comparing with the controlled experiment based on ion beams from a traditional ion accelerator, we found that the laser-accelerated ion beams could cause greater damage in a very short time. Significant thermal effect was induced when the irradiation distance was reduced to less than 1 cm, which could make partial SiC self-annealing to prepare graphene dots directly. The special effects of LIBs indicate their vital role to change the structure of the irradiation sample.  相似文献   
3.
强脉冲离子束在靶上的横截面能量密度分布和束流焦点位置是束流分析和辐照效应研究中重要的技术参数.利用红外成像诊断技术,可以以较高的空间分辨率和能量密度分辨率对束流的横截面分布进行测量,并可以实现对束流焦点的测量和束流传输特性的分析.通过该实验,可以使学生掌握强脉冲加速器诊断的基本技能,加深对加速器原理及脉冲束流分布和传输特性的认识.  相似文献   
4.
A prototype of a laser driven proton accelerator is built at Peking University. Protons exceeding 10 MeV are accelerated from micrometer-thick aluminum targets irradiated by tightly focused laser pulse with 1.8 J energy and 30 fs duration. The beam energy spectrum and charge distribution are measured by a Thomson parabola spectrometer and radiochromic film stacks. The sensitivity of proton cut-off energy to the focusing of the laser beam, the pulse duration, and the foil thickness are systematically investigated in the experiments. Stable proton beams have been produced with an optimized parameter set, providing a cornerstone for the future applications of laser accelerated protons.  相似文献   
5.
Electromagnetic pulses(EMPs)produced by the interaction of a TW femtosecond laser with solid targets at the Compact Laser Plasma Accelerator(CLAPA)are measured and interpreted.The statistical results confirm that the intensities of the EMPs are closely related to both target material and thickness.The signal of the titanium target is more abundant than that of the copper target with the same thickness,and the intensity of EMP is positively correlated with the target thickness for aluminium foil.With the boosted EMP radiations,the energy of accelerated protons is also simultaneously enhanced.In addition,EMPs emitted from the front of the target exceed those from the rear,which are also pertinent to the specific target position.The resonant waveforms in the target chamber are analyzed using the fast Fourier transform,and the local resonance and the attenuation lead to changes of the frequency spectra of EMPs with variation of detecting positions,which is well supported by the modeling results.The findings are beneficial to gaining insight into the mechanism of EMP propagation in a typical target chamber and providing more information for EMP shielding design.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号