首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   5篇
化学   2篇
晶体学   1篇
物理学   7篇
  2024年   1篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2014年   1篇
  2012年   1篇
排序方式: 共有10条查询结果,搜索用时 14 毫秒
1
1.
以2-(3-甲基丙烯酰胺丙基二甲氨基)乙基亚硫酸内盐(MAPES)和双烯丙基十二烷基苯磺酰胺(DDBSA)为功能单体,在(NH_4)_2S_2O_8-NaHSO_3引发体系下改性部分水解聚丙烯酰胺(HPAM)制备了一种水溶性亚硫酸内盐型两性离子聚合物驱油剂AM/AA/MAPES/DDBSA。通过黏弹性、耐温抗盐抗剪切等流变测试以及室内模拟岩心驱替实验研究了两性离子聚合物提高采收率的能力,结果表明了在同等条件下,0.2 wt%亚硫酸内盐型共聚物溶液比部分水解聚丙烯酰胺(HPAM)具有更好的增黏性(845.3 m Pa.s)、抗剪切性(1000 s~(-1),94.2 m Pa·s)、耐温性(100℃,94.8 m Pa·s),抗老化性(80℃下进行10天的老化性测试,黏度保留率达到25%)以及抗盐性(NaCl:30 g·L~(-1),81.8 m Pa·s;MgCl-2和CaCl_2:3 g·L~(-1),77.4、77.9 m Pa·s)。0.2 wt%共聚物溶液在模拟油藏环境下(地层水矿化度:9374.13 mg·L~(-1),油藏温度75℃),提高采收率(EOR)达到了11.5%。  相似文献   
2.
弹光调制干涉信号范围为百赫兹到数十吉赫兹之间,而由于探测器阵列无法对该等级频率实现有效响应,因此,该情况使弹光调制器在光谱成像工作中受到限制。为了解决该问题,发展了一种使用两块具有相近谐振频率的PEM,并基于该频率差进行光信号调制的方法。该方法将两个弹光调制器分别工作在数值略有差异的频率f1和f2上,被测光通过双弹光调制器实现差频调制,因此干涉信号中产生载有被测光的低频调制分量,低频调制频率是以δi(σ,t)=δ0i(σ)sin(ωit)为基频的一系列倍频信号,该低频调制信号使用普通探测器即可实现探测,再将直流和高频信号滤波后,仅对调制信号后的低频成分进行对应的运算即可得到被测光谱。由于该频率差比所使用PEM的谐振频率低2至3个数量级,因此,该方法可使探测器获得更多的响应时间,而且由于该方法并不需要所使用的两块PEM具有严格一致的谐振频率和相同的光程差,降低了系统本身的设计难度。  相似文献   
3.
摘要:采用接枝共聚法合成了以聚乙二醇(PEG)为相变物质,沸石为骨架的PEG沸石固-固相变材料。通过红外光谱(FT—IR)、热失重分析(TGA)和差示扫描量热法(DSC)等测试手段对PEG-沸石固-固相变材料的结构、相变行为及热稳定性进行了研究。结果表明:通过改变PEG的分子量,可以得到不同相变焓和不同相变温度的PEG-沸石固-固相变材料,其相变焓可达105.41J/g,热稳定性良好,起始分解温度高于300℃。  相似文献   
4.
紫外-真空紫外成像光谱仪在我国空间探测中的应用越来越广,在其研制过程中需对其进行校准,但目前国内尚无针对紫外-真空紫外成像光谱仪的计量标准,无法保证测量结果的准确可靠。该文设计了一种紫外-真空紫外成像光谱仪校准装置,实现对紫外-真空紫外成像光谱仪的光谱范围、波长、光谱响应度、空间角分辨率、均匀性等参数的校准。经测试验证,波长测量不确定度为0.080 nm(k=2),光谱响应度测量不确定度为6.8%(k=2),空间角分辨率测量不确定度为0.022 mrad(k=2),均匀性测量不确定度为4.2%(k=2)。  相似文献   
5.
张静  刘吉  刘秀  张斌  李世伟 《应用光学》2016,37(3):430-434
针对重心法、高斯拟合法等传统的光斑中心定位算法存在抗干扰能力差、定位精度低等问题,提出了一种以圆拟合算法为基础进行改进计算光斑中心的方法。采用56式冲锋枪进行实弹单发实验,对测试系统获得的数据分别用改进圆拟合、高斯拟合及重心法进行处理。将处理结果与OFV5000激光速度计测试结果相比较,改进圆拟合算法的相对误差仅为0.92%。结果表明:该算法提高了抗干扰能力,实现了光斑中心的快速、准确计算,并且获得了武器自动机运动规律。  相似文献   
6.
采用超临界干燥法制备了碳气凝胶( Carbon Aerogels,CA),然后通过简单的化学还原法制备CA/SnSb复合负极材料。采用XRD和SEM等手段对材料的结构及形貌进行了表征,利用恒电流充放电测试了材料的循环性能。研究结果表明,碳气凝胶表现出纳米多孔三维网络结构,当对SnSb合金采用碳气凝胶修饰后,纳米SnSb颗粒包含在碳气凝胶的网络骨架中,呈现出碳气凝胶和纳米SnSb合金颗粒相互交错分布的结构,极大改善了复合材料的团聚性。 CA/SnSb复合负极材料首次放电容量高达1120.2 mAh·g-1,循环50次后放电容量仍达到557.3 mAh· g-1,远高于未经碳气凝胶修饰的SnSb合金。循环性能的改善主要归因于碳气凝胶的引入,不仅极大的改善了复合材料的团聚现象,而且可以缓冲SnSb合金在充放电过程中体积变化。  相似文献   
7.
声光可调谐滤波器(AOTF)具有体积小、波长稳定性好、扫描范围宽、调制速度快等优点,在光谱成像中被广泛应用,但单独采用AOTF的成像光谱偏振探测还较少。为此提出只采用两个AOTF的成像光谱偏振探测新方法。该方法首先通过分束镜将入射光分成两束,两束光分别通过两个AOTF,而两个AOTF的正一级衍射光的偏振方向互成45°,由于AOTF的正一级衍射光的偏振方向互相垂直,因此两个AOTF的正负一级分别可得到0°,45°,90°和135°的光强,在测量中需保持两个AOTF的滤光所对应的波长完全相等。最后通过对两个AOTF的正负一级衍射成像,最终得到Stokes偏振信息中S0(0°和90°光强和)、S1(0°和90°光强差)和S2(45°和135°光强差),结合相应的理论公式对被测目标的线偏振度(DoLP)和线偏振角(AoLP)实现成像。再通过对AOTF的射频驱动进行扫频,实现对被测目标不同波长偏振成像,最终实现成像光谱偏振探测。并通过对500,550和600 nm偏振成像进行实验验证。该方法具有无运动部件、无需转动、一次测量同时获得成像光谱偏振信息的优点。  相似文献   
8.
郭春生  李世伟  任云翔  高立  冯士维  朱慧 《物理学报》2016,65(7):77201-077201
结温是制约器件性能和可靠性的关键因素, 通常利用热阻计算器件的工作结温. 然而, 器件的热阻并不是固定值, 它随器件的施加功率、温度环境等工作条件的改变而变化. 针对该问题, 本文以CREE公司生产的高速电子迁移率晶体管(HEMT)器件为研究对象, 利用红外热像测温法与Sentaurus TCAD模拟法相结合, 测量研究了AlGaN/GaN HEMT器件在不同加载功率以及管壳温度下热阻的变化规律. 研究发现: 当器件壳温由80 ℃升高至130 ℃时, 其热阻由5.9 ℃/W变化为6.8 ℃/W, 增大15%, 其热阻与结温呈正反馈效应; 当器件的加载功率从2.8 W增加至14 W时, 其热阻从5.3 ℃/W变化为6.5 ℃/W, 增大22%. 对其热阻变化机理的研究发现: 在不同的管壳温度以及不同的加载功率条件下, 由于材料导热系数的变化导致其热阻随温度与加载功率的变化而变化.  相似文献   
9.
用于光学、微波通信调谐等器件的向列相液晶材料需要具备高响应速度来实现应用需求.液晶器件响应速度与液晶的旋转黏度、液晶的双折射率等因素相关.微波器件用向列相液晶,常采用大π-电子共轭体系、大极性基团来提高液晶分子的双折射率和介电各向异性,实现宽相位调制量,也因此增大了液晶材料黏度,影响了微波器件的响应速度.本文以液晶黏度因素为主线,对本课题组设计合成的42种向列相液晶在25℃时的黏度用旋转流变仪进行测试,从液晶化合物的结构角度分析影响液晶黏度的因素.首次建立向列相液晶分子结构与黏度的BPNN-QSAR定量构效模型,模型测试组预测值跟真实值之间的相关系数q2=0.607>0.5,说明模型可用于液晶化合物的黏度性能预测,并对影响黏度性能的分子结构描述符进行了探讨.从实际应用出发结合本课题研究,设计了两个系列7个大双折射率液晶分子, BPNN模型测试黏度量度小于同类型分子,实验测试值与模型测试值相近.  相似文献   
10.
弹光调制傅里叶变换光谱仪(PEM-FTS)的调制光程差是高速、非线性变化,每秒可产生上万张干涉图。为了实现高速等时间采样干涉信号的快速光谱反演,对大光程差弹光调制干涉信号的特性、加速非均匀快速傅里叶变换算法(NUFFT)进行研究。加速非均匀快速傅里叶变换算法是基于卷积核函数插值的快速傅里叶变换算法,此算法的核函数类型、参数τ、延伸影响因子q、过采样率μ等参数的选择对算法准确度以及复杂度有影响。在分析这些参数对算法影响的基础上,在μ=2,q=10,τ=1×10-6时,将加速的NUFFT算法应用于弹光调制傅里叶变换光谱仪中,重建了632.8 nm的激光和氙灯光谱,复原的632.8 nm激光光谱的频率偏差小于0.013 52,插值时间小于0.267 s。实验表明加速的NUFFT算法有较快的运行速度和小的频率偏差,能快速准确地重建大光程差PEM-FTS的光谱。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号