首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   12篇
晶体学   1篇
物理学   14篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2010年   1篇
  2008年   2篇
  2007年   2篇
  2005年   1篇
  2003年   2篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Employing the metal-organic chemical vapour deposition (MOCVD) technique, we prepare ZnO samples with different morphologies from the film to nanorods through conveniently changing the bubbled diethylzinc flux (BDF) and the carrier gas flux of oxygen (OCGF). The scanning electron microscope images indicate that small BDF and OCGF induce two-dimensional growth while the large ones avail quasi-one-dimensional growth. X-ray diffraction (XRD) and Raman scattering analyses show that all of the morphology-dependent ZnO samples are of high crystal quality with a c-axis orientation. From the precise shifts of the 20 locations of ZnQ (002) face in the XRD patterns and the E2 (high) locations in the Raman spectra, we deduce that the compressive stress forms in the ZnO samples and is strengthened with the increasing BDF and OCGF. Photoluminescence spectroscopy results show all the samples have a sharp ultraviolet luminescent band without any defects-related emission. Upon the experiments a possible growth mechanism is proposed.  相似文献   
2.
The effects of V/Ill growth flux ratio on a-plane GaN films grown on r-plane sapphire substrates with an InGaN interlayer are investigated. The surface morphology, crystalline quality, strain states, and density of basal stacking faults were found to depend heavily upon the V/III ratio. With decreasing V/III ratio, the surface morphology and crystal quality first improved and then deteriorated, and the density of the basal-plane stacking faults also first decreased and then increased. The optimal V/III ratio growth condition for the best surface morphology and crystalline quality and the smallest basal-plane stacking fault density of a-GaN films are found. We also found that the formation of basal-plane stacking faults is an effective way to release strain.  相似文献   
3.
利用甲醇做氧源,采用金属有机物化学气相沉积(MOCVD)工艺在硅(111)衬底上生长了一系列的氧化锌薄膜,生长温度为400~600℃。薄膜的表面形貌及晶体质量分别利用场发射扫描电镜及X射线衍射仪进行了测量。研究表明:随着生长温度的降低,在X射线衍射图谱中氧化锌(101)峰取代了(002)峰成为了主峰。这可能是由于温度过低使得甲醇未完全分解,而甲醇分子抑制了氧化锌沿c轴极性过快的生长所致。室温光致发光光谱结果表明在较高生长温度下获得的样品具有良好的光学性质,发光强度随着温度的降低而降低。  相似文献   
4.
采用一种新方法生长多层InGaN/GaN量子点,研究所生长样品的结构和光学特性。该方法采用了低温生长和钝化工艺,所以称之为钝化低温法。第一层InGaN量子点的尺寸平均宽度40nm,高度15nm,量子点密度为6.3×1010/cm2。随着层数的增加,量子点的尺寸也逐渐增大。在样品的PL谱测试中,观察到在In(Ga)As材料系中普遍观察到的量子点发光的温度特性---超长红移现象。它们的光学特性表明:采用钝化低温法生长的纳米结构中存在零维量子限制效应。  相似文献   
5.
GaN的声表面波特性研究   总被引:1,自引:0,他引:1  
采用金属有机物化学气相外延方法在(0001)面蓝宝石上生长了高质量、高阻的未掺杂(0001)面GaN薄膜。为精确测量GaN薄膜材料的声表面波特性,在GaN薄膜表面上沉积了金属叉指换能器,叉指换能器采用等叉指结构,叉指的数目为40对,叉指间距为15μm。采用脉冲法测量了声表面波在自由表面和金属表面上的速度,并通过计算得到了机电耦合系数(κ^2)。所测量的声表面波速度(ν)为5667m/s,机电耦合系数(κ^2)为1.9%。  相似文献   
6.
The electron mobility limited by the interface and surface roughness scatterings of the two-dimensional electron gas in AlxGa1-xN/GaN quantum wells is studied. The newly proposed surface roughness scattering in the AlGaN/GaN quantum wells becomes effective when an electric field exists in the AlxGa1-xN barrier. For the AlGaN/GaN potential well, the ground subband energy is governed by the spontaneous and the piezoelectric polarization fields which are determined by the barrier and the well thicknesses. The thickness fluctuation of the AlGaN barrier and the GaN well due to the roughnesses cause the local fluctuation of the ground subband energy, which will reduce the 2DEG mobility.  相似文献   
7.
The collective charge density excitations in a free-standing nanorod with a two-dimensional parabolic quantum well are investigated within the framework of Bohm-Pine’s random-phase approximation in the two-subband model.The new simplified analytical expressions of the Coulomb interaction matrix elements and dielectric functions are derived and numerically discussed.In addition,the electron density and temperature dependences of dispersion features are also investigated.We find that in the two-dimensional parabolic quantum well,the intrasubband upper branch is coupled with the intersubband mode,which is quite different from other quasi-one-dimensional systems like a cylindrical quantum wire with an infinite rectangular potential.In addition,we also find that higher temperature results in the intersubband mode(with an energy of 12 meV(~ 3 THz)) becoming totally damped,which agrees well with the experimental results of Raman scattering in the literature.These interesting properties may provide useful references to the design of free-standing nanorod based devices.  相似文献   
8.
We theoretically study the influence of spacer layer thickness fluctuation(SLTF) on the mobility of a twodimensional electron gas(2DEG) in the modulation-doped Al x Ga 1 x As/GaAs/Al x Ga 1 x As quantum well.The dependence of the mobility limited by SLTF scattering on spacer layer thickness and donor density are obtained.The results show that SLTF scattering is an important scattering mechanism for the quantum well structure with a thick well layer.  相似文献   
9.
Low-temperature photoluminescence measurement is performed on an undoped AlxGa1-xN/GaN heterostructure. Temperature-dependent Hall mobility confirms the formation of two-dimensional electron gas (2DEG) near the heterointerface. A weak photoluminescence (PL) peak with the energy of - 79meV lower than the free exciton (FE) emission of bulk GaN is related to the radiative recombination between electrons confined in the triangular well and the holes near the fiat-band region of GaN. Its identification is supported by the solution of coupled one-dimensional Poisson and Schr6dinger equations. When the temperature increases, the red shift of the 2DEG related emission peak is slower than that of the FE peak. The enhanced screening effect coming from the increasing 2DEG concentration and the varying electron distribution at two lowest subbands as a function of temperature account for such behaviour.  相似文献   
10.
The mobility limited by cluster scattering in ternary alloy semiconductor quantum wire(QWR) is theoretically investigated under Born approximation. We calculate the screened mobility due to clusters(high indium composition InGaN) scattering in the InxGa1 xN QWR structure. The characteristics of the cluster scattering mechanism are discussed in terms of the indium composition of clusters, the one-dimensional electron gas(1DEG) concentration, and the radius of QWR. We find that the density, breadth of cluster, and the correlation length have a strong effect on the electron mobility due to cluster scattering. Finally, a comparison of the cluster scattering is made with the alloy-disorder scattering. It is found that the cluster scattering acts as a significant scattering event to impact the resultant electron mobility in ternary alloy QWR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号