首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   90篇
  国内免费   28篇
化学   60篇
力学   3篇
数学   1篇
物理学   201篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2017年   8篇
  2016年   8篇
  2015年   3篇
  2014年   18篇
  2013年   6篇
  2012年   10篇
  2011年   15篇
  2010年   16篇
  2009年   14篇
  2008年   19篇
  2007年   12篇
  2006年   32篇
  2005年   16篇
  2004年   12篇
  2003年   7篇
  2002年   12篇
  2001年   8篇
  2000年   7篇
  1999年   4篇
  1998年   5篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   5篇
  1988年   1篇
  1986年   1篇
排序方式: 共有265条查询结果,搜索用时 31 毫秒
1.
在溶液法制备有机电致发光器件(OLEDs)的研究中, PEDOT∶PSS由于具有较好的成膜性与高透光性而常被用作器件的空穴注入层。但相关研究表明, PEDOT∶PSS本身稳定性较差以及功函数较低,这使得溶液法制备OLEDs的性能差且不稳定。蓝色作为全彩色的三基色之一,制备高效的蓝光器件对于实现高质量显示器件和固态照明装置必不可少。而目前溶液法制备蓝光OLEDs的器件效率普遍较差,针对此问题,本文利用传统的蓝光热激活延迟荧光发光(TADF)材料DMAC-DPS作为发光层,用溶液法制备了蓝光TADF OLEDs,通过在PEDOT∶PSS中掺杂PSS-Na制备混合空穴注入层(mix-HIL)来提高空穴注入层的功函数,研究其对于蓝光TADF OLEDs器件性能的影响。首先在PEDOT∶PSS水溶液中掺入不同体积的PSS-Na溶液,在相同条件下旋涂制膜,进行器件制备。通过观测各个实验组器件的电致发光(EL)光谱,发现掺入PSS-Na后器件EL谱存在光谱蓝移的现象,这是由于掺入PSS-Na水溶液后, mix-HIL层的厚度有所降低,使得在微腔效应作用下, EL光谱发生蓝移。通过对比各组器件的电流密度-电压-亮度(J-V-L)曲线及其计算所得器件的电流效率,结果显示随着PSS-Na的掺入,器件的亮度和电流都有所增大,器件的电流效率也得到了提升,当掺杂比例为0.5∶0.5(PEDOT∶PSS/PSS-Na)时提升幅度最大(亮度提升86.7%,电流效率提升34.3%)。通过在瞬态电致发光测试过程中施加或撤去驱动电压观测了器件EL强度的变化,分析了在混合空穴注入层/发光层(mix-HIL/EML)界面处的电荷积累情况。实验证明,通过在PEDOT∶PSS中掺杂PSS-Na制备mix-HIL获得了蓝光TADF OLEDs器件性能的提升,这是一个获得高效率溶液法制备OLEDs的可行方法。  相似文献   
2.
为了提升溶液法制备的蓝色荧光有机发光二极管(OLEDs)的效率,采用了基于热激活延迟发光(TADF)的激基复合物作为主体材料。TADF激基复合物主体可以利用反向系间窜跃上转换形成单线态激子并将能量传递到客体,从而可以同时利用发光层中的三线态激子和单线态激子,以提升蓝色荧光器件的效率。选择蓝色荧光材料1-4-Di-[4-(N,N-diphenyl)amino]styryl-benzene(DSA-ph)作为客体发光材料,4,4′,4″-T-ris(carbazol-9-yl)triphenylamine(TCTA)掺杂1,3,5-Tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl)(TPBi)作为热激活延迟荧光激基复合物主体,通过溶液法制备了蓝色荧光OLEDs。通过测试TCTA,TPBi以及TCTA掺杂TPBi的光致发光光谱发现,与TCTA和TPBi相比,TCTA掺杂TPBi的光致发光谱(PL)发生了明显的红移(峰值波长变为437 nm),而且光谱变宽,证明了TCTA∶TPBi激基复合物的形成。通过对于DSA-ph掺杂激基复合物主体的薄膜与DSA-ph掺杂poly(methyl methacrylate)(PMMA)的薄膜进行PL测试发现,两者发光峰相同,都是来自DSA-ph的发光,说明激基复合物主体将能量传递到了DSA-ph;DSA-ph的吸收光谱与激基复合物主体的PL光谱存在很大重叠,说明激基复合物主体与DSA-ph的能量传递非常有效;通过对激基复合物主体掺杂不同浓度客体的薄膜进行瞬态PL衰减测试发现,与纯DSA-ph的寿命相比,DSA-ph掺杂激基复合物主体之后其寿命会延长,纯DSA-ph的寿命只有1.19 ns,DSA-ph掺杂激基复合物主体的荧光衰减曲线与激基复合物主体的荧光衰减曲线相似,这进一步证明了激基复合物主体将能量传递到了DSA-ph。研究了主体引入以及DSA-ph掺杂浓度对器件性能的影响。对于器件的亮度、电流密度、电压、电流效率、电致发光光谱等参数进行了测试,与不采用激基复合物主体的器件相比,采用激基复合物主体的器件性能明显改善,在DSA-ph掺杂浓度为10%时,器件亮度从2133.6 cd·m^-2提升到了3597.6 cd·m^-2,器件效率从1.44 cd·A-1提升到了3.15 cd·A-1,发光峰只有来自DSA-ph的发光。采用TADF激基复合物主体的方法有潜力实现溶液法制备的高效蓝色荧光OLEDs。  相似文献   
3.
利用旋转涂膜方法制备了以P3HT:PCBM为有源层的聚合物太阳能电池, 器件结构为ITO/PEDOT:PSS/P3HT:PCBM/Al(氧化铟锡导电玻璃/聚二氧乙基噻吩:聚对苯乙烯磺酸/聚三已基噻酚:富勒烯衍生物/铝),研究了退火温度对聚合物太阳能电池性能的影响. 实验发现: 聚合物薄膜经过120 °C退火10 min处理后, 开路电压(Voc)达到0.64 V, 短路电流密度(Jsc)为10.25 mA·cm-2, 填充因子(FF) 38.1%, 光电转换效率(PCE)达到2.00%. 为了讨论其内在机制, 对不同退火条件下聚合物薄膜进行了各种表征. 从紫外-可见吸收光谱中发现, 退火处理使P3HT在可见光范围内吸收加强且吸收峰展宽, 特别是在560和610 nm处的吸收强度明显增大; X射线衍射(XRD)结果表明, 120 °C退火后P3HT在(100)晶面上的衍射强度是未退火薄膜的2.8倍, 有利于光生载流子的输运; 原子力显微镜(AFM)研究结果表明, 退火显著增大了P3HT与PCBM的相分离程度, 提高了激子解离的几率; 傅里叶变换红外(FTIR)光谱验证了退火并没有引起聚合物材料物性的变化.  相似文献   
4.
5.
在体积分数95%乙醇介质中,吖啶黄、吖啶橙的荧光发射波长与苏丹红染料的吸收波长十分接近。实验数据表明,随着苏丹红I~IV用量的增加,溶液中吖啶黄、吖啶橙荧光发射强度明显降低,其荧光猝灭程度与苏丹红用量成正比。动力学研究表明苏丹红I,II与吖啶黄或吖啶橙之间可形成非共价复合物,从而发生静态荧光猝灭;而苏丹红III,IV猝灭吖啶黄或吖啶橙则表现为一种复杂的动力学特点,可能同时存在静态荧光猝灭与动态猝灭。  相似文献   
6.
LED蓝光泄露安全性研究   总被引:5,自引:0,他引:5  
研究了LED照明器件的蓝光特性。针对我国的LED照明现状,通过测试LED照明器件的光谱成分,根据现行国内外标准GB/T 20145—2006/CIE S009/E:2002和IEC62471:2006,以及CTL-0744_2009-laser决议,分析了LED光生物安全性,给LED照明灯具制造和相关安全性标准、法律制定提供参考。LED中蓝光的辐亮度值低于100 W·m-2·Sr-1时对人眼属于无危害类型,正常使用情况下不会对人眼造成伤害,但是应该注意对特殊人群(小孩)的保护,避免长时间直视光源。灯具富蓝化也会影响人的作息规律,因此色温4 000 K以下,显色指数80的LED灯具适合在室内使用,同时还要根据不同的使用距离选择不同的参数的灯具。  相似文献   
7.
作为下一代固态照明光源,白光有机电致发光二极管(white organic light-emitting diodes, WOLEDs)由于其高效、节能、环保等特点,已经引起了广泛的关注,将其用做照明光源的研究和应用也取得了长足的发展。文中首先简述了WOLEDs的发光原理,总结了目前常见的WOLEDs的结构和常用的发光材料,重点介绍了多发射层白光器件、多重掺杂单发射层白光器件、基于激基缔合物和激基复合物发射的白光器件、p-i-n结构的白光器件等器件结构的发光机理及其优缺点。本文依据WOLEDs高效率、高亮度、高显色性、长寿命的实用条件,详细解释了器件效率,色纯度,相关色温和器件寿命等性能评价标准。我们还分析了WOLEDs目前亟需解决的技术瓶颈,并针对器件效率和器件寿命两个主要方面提出了相应的改善方案。介绍了世界上照明用WOLEDs各公司的研究进展并对其市场前景做出了展望。  相似文献   
8.
磷光材料由于可以利用电致激发所形成的单重态和三重态激子,因而可以得到接近100%的内量子效率。文章对常温下基于磷光材料Ir(ppy)3及Ir(piq)3掺杂PVK薄膜为发光层的器件的光学和电学特性进行了研究。光致发光的结果显示相同掺杂质量比下由PVK到Ir(piq)3的能量传递比到Ir(ppy)3更加困难。通过研究两种掺杂体系不同质量比的电致发光特性,可以认为这两种磷光器件的发光主要来自于磷光客体分子直接俘获载流子发光而非主体的能量传递。Ir(piq)3掺杂体系对掺杂比例的依赖更为明显,从能级结构分析,认为是由于Ir(piq)3的更低的HOMO及高的LUMO能级,而比Ir(ppy)3具有更好的载流子俘获和传输特性。  相似文献   
9.
In this work, bathocuproine (BCP) and bathophenanthroline (Bphen), commonly used in small-molecule organic solar cells (OSCs), are adopted as the buffer layers to improve the performance of the polymer solar cells (PSCs) based on poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV): [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojunction. By inserting BCP or Bphen between the active layer and the top cathode, all the performance parameters are dramatically improved. The power conversion efficiency is increased by about 70% and 120% with 5-nm BCP and 12-nm Bphen layers, respectively, when compared with that of the devices without any buffer layer. The performance enhancement is attributed to BCP or Bphen (i) increasing the optical field, and hence the absorption in the active layer, (ii) effectively blocking the excitons generated in MEH-PPV from quenching at organic/aluminum (Al) interface due to the large band-gap of BCP or Bphen, which results in a significant reduction in series resistance (Rs), and (iii) preventing damage to the active layer during the metal deposition. Compared with the traditional device using LiF as the buffer layer, the BCP-based devices show a comparable efficiency, while the Bphen-based devices show a much larger efficiency. This is due to the higher electron mobility in Bphen than that in BCP, which facilitates the electron transport and extraction through the buffer layer to the cathode.  相似文献   
10.
微沟槽结构注塑成形的充型过程计算方法   总被引:2,自引:0,他引:2  
微注塑成形制造方法适合于热塑性材料微小型器件大批量加工,对微注塑关键步骤——充型进行分析计算,有助于微注塑工艺参数和模具结构优化。目前研究表明,微尺度聚合物熔体流动与常规流动存在显著差异,采用常规尺度流动计算分析工具会带来较大偏差。本文以开源计算代码OpenFOAM为基础,综合由实验获得的熔体表面特性规律和粘度变化规律等,采用面向对象编程方法构建了熔体填充微结构型腔流动过程的计算模块,以微流体器件中的典型微结构——微沟槽注塑充型过程为例进行数值模拟,分析了表面力和粘度作用对其注塑充型填充率的影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号