首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   26篇
  国内免费   1篇
化学   1篇
物理学   28篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2010年   4篇
  2009年   1篇
  2008年   5篇
  2007年   3篇
  2004年   1篇
  2003年   1篇
  2002年   4篇
  1999年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
Nanocrystalline Si/SiO2 multilayers are prepared by thermally annealing amorphous Si/SiO2 stacked structures. The photoluminescence intensity is obviously enhanced after hydrogen passivation at various temperatures. It is suggested that the hydrogen trapping and detrapping processes at different temperatures strongly influence the passivation effect. Direct experimental evidence is given by electron spin resonance spectra that hydrogen effectively reduces the nonradiative defect states existing in the Si nanocrystas/SiO2 system which enhances the radiative recombination probability. The luminescence characteristic shows its stability after hydrogen passivation even after aging eight months.  相似文献   
2.
Cadmium sulphide (CdS) and cadmium telluride (CdTe) thin films are deposited by electron beam evaporation. Atomic force microscopy (AFM) reveals that the root mean square (RMS) roughness values of the CdS films increase as substrate temperature increases. The optical band gap values of CdS films increase slightly with the increase in the substrate temperature, in a range of 2.42-2.48 eV. The result of Hall effect measurement suggests that the carrier concentration decreases as the substrate temperature increases, making the resistivity of the CdS films increase. CdTe films annealed at 300 ℃ show that their lowest transmittances are due to their largest packing densities. The electrical characteristics of CdS/CdTe thin film solar cells are investigated in dark conditions and under illumination. Typical rectifying and photovoltaic properties are obtained.  相似文献   
3.
利用KrF准分子激光退火超薄非晶硅膜,并结合热退火技术制备了单层纳米硅薄膜并研究了薄膜的场电子发射性质.在晶化形成的纳米硅薄膜中可以观测到稳定的场电子发射现象,其开启电场从原始淀积的非晶硅薄膜的17V/μm降低到8.5V/μm,而场发射电流密度可以达到0.1mA/cm2.激光晶化后形成的纳米硅材料的场电子发射特性的改善可以从薄膜表面形貌的改变以及高密度纳米硅的形成所导致的内部电场增强作用来解释. 关键词: 纳米硅 场发射 激光晶化  相似文献   
4.
ZnS quantum dots(QDs) synthesized in water and ethanol solutions were coated with polystyrene (PS) and SiO2 shells,respectively.The band edge emission was enhanced by nearly five times after PS coating and by about thirteen times after SiO2 coating,because the surface trap states were removed.From the photoluminescence properties of ZnS QDs coated with PS and SiO2 shells we have detected the improvement of thermal stability.This is due to the fact that the surface passivation can prevent the further growth of the ZnS QDs and the diffusion of oxygen on the surface of ZnS QDs during thermal oxidation.  相似文献   
5.
李卫  徐岭  孙萍  赵伟明  黄信凡  徐骏  陈坤基 《物理学报》2007,56(7):4242-4246
以自组装单层胶体小球阵列为掩模,采用直接胶体晶体刻蚀技术在硅表面制备二维有序尺寸可控的纳米结构.在样品制备过程中,首先通过自组装法在硅表面制备了直径200nm的单层聚苯乙烯(PS)胶体小球的二维有序阵列;然后对样品直接进行反应离子刻蚀(RIE),以氧气为气源,利用氧等离子体对聚苯乙烯小球和对硅的选择性刻蚀作用,通过改变刻蚀时间,制备出不同尺寸的PS胶体小球的有序单层阵列;接着以此二维PS胶体单层膜为掩模,以四氟化碳为气源对样品进行刻蚀;最后去除胶体球后得到二维有序的硅柱阵列.SEM和AFM的测量结果表明:改变氧等离子体对胶体球的刻蚀时间和四氟化碳对硅的刻蚀时间,可以控制硅柱的尺寸以及形貌,而硅柱阵列的周期取决于原始胶体球的直径. 关键词: 胶体晶体刻蚀 纳米硅柱阵列  相似文献   
6.
张文平  马忠元  徐骏  徐岭  李伟  陈坤基  黄信凡  冯端 《物理学报》2015,64(17):177301-177301
通过COMSOL Multiphysics 和 Lumerical FDTD solution对不同尺寸纳米银六角阵列在非晶态掺氧氮化硅(a-SiNx:O)介质中的局域表面等离激元共振(LSPR)特性进行仿真, 计算结果表明半径为25 nm的纳米银六角阵列形成的局域表面等离激元(LSP)与厚度为70 nm的a-SiNx:O的蓝光发射(460 nm)的共振效果最为显著, 随着纳米银颗粒尺寸的增大其消光共振峰红移. 在460 nm波长激发下半径为25 nm的纳米银阵列在a-SiNx:O中的极化强度和表面极化电荷的分布模拟证明了该阵列在460 nm激发下形成的LSP为偶极子极化模式, 通过对该尺寸的纳米银阵列的LSP 在a-SiNx:O中的最强垂直辐射空间计算, 获得了银颗粒上方a-SiNx:O的最佳厚度为30 nm, 仿真结果对硅基蓝光发射器件(450–460 nm)的设计提供了重要的理论参考.  相似文献   
7.
Nanocrystalline Ge (nc-Ge) single layers and nc-Ge/SiNx multilayers are prepared by laser annealing amorphous Ge (a-Ge) films and a-Ge/SiNx multilayers. The microstructures as well as the electrical properties of laser-crystallized samples are systematically studied by using various techniques. It is found that the optical band gap of nc-Ge film is reduced compared with its amorphous counterpart. The formed nc-Ge film is of p-type, and the dark conductivity is enhanced by 6 orders for an nc-Ge single layer and 4 orders for a multilayer. It is suggested that the carrier transport mechanism is dominant by the thermally activation process via the nanocrystal, which is different from the thermally annealed nc-Ge sample at an intermediate temperature. The carrier mobility of nc-Ge film can reach as high as about 39.4 cm2.V ^-1 .s^-1, which indicates their potential applications in future nano-devices.  相似文献   
8.
带隙可调的CdS纳米晶薄膜的化学浴制备和光学性质   总被引:1,自引:1,他引:0  
CdS是一种直接带隙半导体,室温下其禁带宽度约为2.4eV,是一种良好的太阳能电池窗口层材料和过渡层材料。分别以CdCl2和(NH2)2CS作为镉源和硫源,用化学淀积法在玻璃上生长CdS纳米薄膜,考察了Cd2 浓度、淀积温度、淀积时间以及溶液pH值对CdS成膜的影响。紫外可见光吸收谱和荧光光谱的结果表明,在样品的制备过程中,通过改变反应条件如化学试剂的浓度、加热温度、加热时间等来控制薄膜中颗粒的尺寸大小,随着反应温度的逐渐降低或反应时间的减少等可以使得到的CdS纳米晶薄膜中晶粒尺寸逐渐减小,带隙增加;镉离子浓度越小或氨水浓度越大,所得CdS纳米晶薄膜带隙越大。  相似文献   
9.
Cadmium sulphide (CdS) and cadmium telluride (CdTe) thin films are deposited by electron beam evaporation. Atomic force microscopy (AFM) reveals that the root mean square (RMS) roughness values of the CdS films increase as substrate temperature increases. The optical band gap values of CdS films increase slightly with the increase in the substrate temperature, in a range of 2.42-2.48 eV. The result of Hall effect measurement suggests that the carrier concentration decreases as the substrate temperature increases, making the resistivity of the CdS films increase. CdTe films annealed at 300℃ show that their lowest transmittances are due to their largest packing densities. The electrical characteristics of CdS/CdTe thin film solar cells are investigated in dark conditions and under illumination. Typical rectifying and photovoltaic properties are obtained.  相似文献   
10.
以CdSe纳米晶体为核,用胶体化学的方法,通过化学替代反应,获得了不同阱层或不同垒层的CdSeHgSeCdSe量子点量子阱(QDQW)晶体.紫外可见光吸收谱研究表明,通过调节QDQW中间HgSe阱层的厚度从0.9nm至0,可以调节QDQW颗粒的带隙从1.8变化至2.1eV,实现QDQW纳米晶体的剪裁.光致荧光(PL)谱研究显示,QDQW形成后,CdSeHgSe纳米颗粒表面态得到钝化,显现出发光强度加强的带边荧光峰.利用有效质量近似模型,对QDQW晶粒内部电子的1s—1s态进行了估算,估算结果总体趋势与实验数据相符 关键词: 量子点量子阱晶体 能带剪裁 加强的带边荧光峰  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号