首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   6篇
  国内免费   9篇
化学   3篇
数学   1篇
物理学   14篇
  2022年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2005年   2篇
  1964年   1篇
排序方式: 共有18条查询结果,搜索用时 0 毫秒
1.
采用了密度泛函理论中的杂化密度泛函B3LYP方法,在6-31G*基组水平上对[Mg(BH_4)_2]_n(n=1-3)团簇的结构进行了优化,几何结构优化时自旋多重度取了1、3、5等多种情况进行计算.最后对最稳定结构的振动特性、成键特性、电荷特性和稳定性等进行了研究.结论表明:团簇最稳定结构易形成链状结构,其中Mg-B键长为0.210~0.253 nm,-BH_4基中靠近Mg原子处的B-H键长约为0.125 nm、远离Mg原子处的B-H键长为0.119 nm.对比团簇和晶体的光谱结构表明,-BH_4基在团簇和晶体中结构基本一致. Mg原子的自然电荷在1.687~1.757e之间,B原子的自然电荷在-0.702~-0.788e之间,H原子基本不参与电荷转移,其自然电荷在-0.094~0.070e之间.团簇中Mg原子和-BH_4基之间相互作用呈现较强的离子性,Mg(BH_4)_2团簇具有相对较高的动力学稳定性.  相似文献   
2.
运用密度泛函理论和含时密度泛函理论研究了两种含二-二甲基芴氨基苯并呋喃基团的有机染料敏化剂的几何结构、电子结构、极化率和超极化率以及紫外可见谱. 基于理论计算和实验结果的一致性指认了电子吸收谱的特征. 可见区的吸收带都与光诱导电荷转移过程有关,二甲基芴氨基苯并呋喃基团是在光电转换敏化中起主要作用的基团. 通过对两种染料敏化剂的比较,分析了亚乙烯基对几何结构、电子结构和光谱特性影响.  相似文献   
3.
本文采用Monte Carlo方法和Gupta势函数对(CuAu3)n和(Cu3Au)n团簇的基态能量和结构进行了模拟研究,通过计算平均结合能、结合能的一阶差分和二阶差分,分析了团簇的稳定性.结果表明:(Cu3Au)n和(CuAu3)n团簇都为立体结构,都是以二十面体为基础形成的;(Cu3Au)n和(CuAu3)n团簇结构中金原子都有位于团簇表面的倾向;这两类团簇结构的区别在于:在(Cu3Au)n团簇中,铜一金原子混合程度高;而(CuAu3)n团簇中,形成金原子位于表层,铜原子位于中心的层状结构;且当n=3、5、7、9时,(Cu3Au)n和(CuAu3)n团簇在各自的序列中相对稳定性较邻近团簇高,特别是n=7的团簇,相对稳定性最高.  相似文献   
4.
The adsorption of H2 on two kinds of Mg3N2(110) crystal surface is studied by first principles. Adsorption sites, adsorption energy, and the electronic structure of the Mg3N2(110)/H2 systems are calculated separately. It is found that H2 is mainly adsorbed as chemical adsorption, on these sites the 1-12 molecules are dissociated and the H atoms tend to the top of two N, respectively, forming two NH, or the H atoms tend to the same N forming one NH2. There are also some physicM adsorption sites. One of the bridge sites of Mg3N2 (110) surface is more favorable than the other sites. On this site, H atoms tend to the top of two N, forming two NH. This process belongs to strong chemical adsorption. The interaction between 1-12 molecule and Mg3N2(110) surface is mainly due to the overlap-hybridization among Hls, N 2s, and N 2p states, covalent bonds are formed between the N and H atoms.  相似文献   
5.
采用密度泛函理论B3LYP方法研究Mg(NH2)2与LiH放氢反应机理,在6-311G(d,p)基组水平上对反应物、中间体、过渡态及产物进行全几何参数优化,频率分析和内禀反应坐标(IRC)计算证实中间体和过渡态的正确性和相互连接关系.计算结果表明,反应分三个阶段,包括第一步氢取代反应,第二步氢取代反应和脱氢后的异构化反应.反应有两条途径,其中第二步对位氢取代反应所对应通道为主反应通道.反应释放的H2中两个氢原子分别来源于Mg(NH2)2和LiH.  相似文献   
6.
运用密度泛函理论(DFT)的杂化密度泛函B3LYP方法,在6-31G*基组水平上对(SiC)n(n=1-5)团簇各种可能的构型进行了几何结构优化,预测了各团簇的最稳定结构。并对最稳定结构的振动特性、成键特性、电荷特性等进行了理论研究。结果表明:(SiC)n团簇形成碳原子骨架,而硅原子生长在碳原子骨架上;在Si和C相互作用形成团簇的过程中,Si原子向C原子有电荷转移,团簇中原子间相互作用呈现共价型;SiC、(SiC)5团簇有相对较高的动力学稳定性;团簇稳定结构的IR最强振动主要是C-Si键的伸缩振动,Raman较强振动均来自C-C键的伸缩振动。  相似文献   
7.
基于密度泛函理论的第一性原理方法,通过计算表面能确定LaFeO3(010)表面为最稳定的吸附表面,研究了H2分子在LaFeO3(010)表面的吸附性质。LaFeO3(010)表面存在LaO和FeO2两种终止表面,但吸附主要发生在FeO2终止表面,由于LaFeO3(010)表面弛豫的影响,使得凹凸不平的表面层增加了表面原子与H原子的接触面积,表面晶胞的纵向体积增加约2.5%,有利于H原子向晶体内扩散。研究发现,H2分子在LaFeO3(010)表面主要存在3种化学吸附方式:第一种吸附发生在O-O桥位,2个H原子分别吸附在2个O原子上,形成2个-OH基,这是最佳吸附位置,此时H原子与表面O原子的作用主要是H1s与O2p轨道杂化作用的结果,H-O之间为典型的共价键。H2分子的解离能垒为1.542 eV,说明表面需要一定的热条件,H2分子才会发生解离吸附;第二种吸附发生在Fe-O桥位,1个H原子吸附在O原子上形成1个-OH基,另一个H原子吸附在Fe原子上形成金属键;第三种吸附发生在O顶位,2个H原子吸附在同一个O原子上,形成H2O分子,此时H2O分子与表面形成物理吸附,H2O分子逃离表面后容易形成氧空位。此外,H2分子在LaFeO3(010)表面还可以发生物理吸附。  相似文献   
8.
用密度泛函理论(DFT)的杂化密度泛函B3LYP方法在6-31G*基组水平上对(Mg3N2)n(n=1~4)团簇各种可能的构型进行几何结构优化,预测了各团簇的最稳定结构.并对最稳定结构的振动特性、成键特性、电荷特性和稳定性等进行了理论分析.结果表明:(Mg3N2)n=1~4团簇易形成笼状结构,其最稳定构型中N原子配位数以3、4较多见;团簇主要由Mg-N键组成,Mg-N键长为0.194~0.218nm,Mg-Mg 键长为0.262~0.298 nm;N原子的平均自然电荷为-2.06 e,Mg原子的平均自然电荷为 1.37 e;(Mg3N2)2团簇有相对较高的动力学稳定性.  相似文献   
9.
铜团簇Cun(n=2-60)的基态能量与几何结构的Monte Carlo模拟   总被引:15,自引:8,他引:7  
采用蒙特卡洛(MC)方法和嵌入原子势(EAM)函数,研究了铜原子团簇的结构及其结合能.表明铜原子团簇在n值较小时,趋向于立体结构,而非平面结构;n>13的铜团簇都是在正二十面体的基础上添加原子形成的,通过分析团簇的结构和能量之间的关系发现,如果添加原子后形成的Cun具有较高的对称性,那么这种铜团簇的结构就稳定.  相似文献   
10.
运用杂化密度泛函B3LYP方法,在6-31G*水平上对X@Mg_8B_(14)(X=H,Li)两种团簇进行了几何结构优化,并计算了其电子结构、振动特性和成键特性.计算结果表明:优化后的X@Mg_8B_(14)(X=H,Li)团簇均为橄榄球状核壳结构,对称性点群均为D2h.用自然键轨道方法分析了成键性质,发现X@Mg8B14(X=H,Li)团簇中B原子主要是sp杂化轨道参与成键,Mg原子主要是s轨道参与成键.Mg原子和B原子之间发生了大量的电子转移,在B原子层堆积了大量的电子;尤其是封装Li原子后,B原子层得电子数量明显增加.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号