首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   6篇
物理学   9篇
  2017年   1篇
  2016年   1篇
  2014年   4篇
  2013年   1篇
  2012年   2篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Lanthanum silicates La10Si6-xMgxO27-x(x = 0–0.4) were prepared by solid state synthesis to investigate the effect of Mg doping on crystal structure and ionic conductivity. Rietveld analysis of the powder XRD patterns reveals that Mg substitution on Si site results in significant enlargement of channel triangles, favoring oxide-ion conduction. Furthermore,an increase of Mg concentration significantly influences the linear density of interstitial oxygen, which plays an important role in ionic conductivity. The Arrhenius plots of La10Si6-xMgxO27-x(x = 0–0.4) suggest that Mg-doped samples present higher conductivity and lower activation energy than non-doped La10Si6O27, and La10Si5.8Mg0.2O26.8exhibits the highest conductivity with a value of 3.0×10-2S ·cm-1at 700?C. Such conductive behavior agrees well with the refined results.The corresponding mechanism has been discussed in this paper.  相似文献   
2.
The photoluminescence(PL) properties of Y2O3:Eu3+nanophosphors were systematically investigated with the goal of improving the color quality and quantum efficiency of Y2O3:Eu3+nanophosphors for potential applications in nanoscale devices. The emission spectra, excitation spectra and fluorescence decay curves were employed to trace the energy transfer process from Eu3+at C3isite to Eu3+at C2site. The experimental results show that the energy transfer process becomes more and more efficient with the increase in the Eu3+concentration. The emission of Eu3+at C2site is favorable because it has high radiative efficiency and better color quality. The successful suppress of the emission Eu3+at C3iis especially important for its applications in general illumination or display technology. The quantum efficiency and color quality of Y2O3:Eu3+can be improved by controlling the energy transfer between the Eu3+at S6site and Eu3+at C2site.  相似文献   
3.
张钊  崔航  杨大鹏  张剑  汤顺熙  吴思  崔啟良 《中国物理 B》2017,26(10):106402-106402
The structural compression mechanism and compressibility of gallium oxyhydroxide, α-GaOOH, are investigated by in situ synchrotron radiation x-ray diffraction at pressures up to 31.0 GPa by using the diamond anvil cell technique. Theα-GaOOH sustains its orthorhombic structure when the pressure is lower than 23.8 GPa. The compression is anisotropic under hydrostatic conditions, with the a-axis being most compressible. The compression proceeds mainly by shrinkage of the void channels formed by the coordination GaO_3(OH)_3 octahedra of the crystal structure. Anomaly is found in the compression behavior to occur at 14.6GPa, which is concomitant with the equatorial distortion of the GaO_3(OH)_3 octahedra. A kink occurs at 14.6 GPa in the plot of finite strain f versus normalized stress F, indicating the change in the bulk compression behavior. The fittings of a second order Birch–Murnaghan equation of state to the P–V data in different pressure ranges result in the bulk moduli B_0= 199(1) GPa for P 14.6 GPa and B_0= 167(2) GPa for P 14.6 GPa. As the pressure is increased to about 25.8 GPa, a first-order phase transformation takes place, which is evidenced by the abrupt decrease in the unit cell volume and b and c lattice parameters.  相似文献   
4.
在室温条件下,利用金刚石对顶砧高压技术,对叠氮化钡进行了原位高压拉曼光谱研究,采用红宝石荧光压标测压,实验的最高压力为10 GPa。实验压力范围内拉曼光谱随压力增加发生了丰富的变化。由于多处拉曼峰的出现和消失并伴随频移有拐点,我们判断叠氮化钡在3 GPa左右时发生了第一次结构相变;随着压力继续增加,在3.5~6.5 GPa范围内拉曼光谱仍不断变化,我们判断可能是相变或者是N=N=N键角和两个键长的非对称压缩导致的;压力继续增加,在8 GPa左右,多处新峰出现和峰的劈裂表明又发生了一次结构相变,并且判断叠氮化钡向着更复杂的结构转变。通过实验可以确定,实验压力范围内N=N=N离子并未被破坏。其实验结果有待高压同步辐射实验的进一步确认。  相似文献   
5.
在室温条件下, 利用金刚石对顶砧超高压实验技术, 对液态的正庚烷进行了原位高压拉曼光谱研究, 采用红宝石荧光压标测压, 实验的最高压力为20.78 GPa。实验中发现, 当压力达到1.2 GPa左右时, 原本透明的样品腔内有小晶粒形成, 此时测量的拉曼谱上发现有许多新的拉曼峰出现。因此, 我们判断正庚烷在此压力下发生了一次相变; 当压力增加到3 GPa左右时, 在92.42 cm-1和2913.6 cm-1处又出现了2个新的拉曼峰, 并且拉曼频移随压力变化的曲线出现拐点, 我们推测在此压力下正庚烷可能又发生第二次相变; 当压力高于14.5 GPa时, 正庚烷发生了第三次压致相变; 而当压力介于7.5~14.5 GPa之间正庚烷处于两相共存的状态。我们给出了液体正庚烷在高压下的相变序列为: 液相-旋转相Ⅲ-旋转相Ⅳ-结晶相。该研究结果为进一步理解和研究其他正烷烃在高压下的结构、物理和化学特性提供了理论基础。  相似文献   
6.
Lanthanum silicates LaloSi6 xMgxO27_x (x = 0-0.4) were prepared by solid state synthesis to investigate the effect of Mg doping on crystal structure and ionic conductivity. Rietveld analysis of the powder XRD patterns reveals that Mg substitution on Si site results in significant enlargement of channel triangles, favoring oxide-ion conduction. Furthermore, an increase of Mg concentration significantly influences the linear density of interstitial oxygen, which plays an important role in ionic conductivity. The Arrhenius plots of LaloSi6_xMgxO27 x (x = 0-0.4) suggest that Mg-doped samples present higher conductivity and lower activation energy than non-doped La10Si6027, and LaloSis.8Mgo.2026.8 exhibits the highest conductivity with a value of 3.0× 10-2 S .cm 1 at 700 ℃. Such conductive behavior agrees well with the refined results. The corresponding mechanism has been discussed in this paper.  相似文献   
7.
This study presents high pressure phase transitions and equation of states of cerium under pressures up to 51 GPa at room temperature. The angle-dispersive x-ray diffraction experiments are carried out using a high energy synchrotron x-ray source. The bulk moduli of high pressure phases of cerium are calculated using the Birch–Murnaghan equation. We discuss and correct several previous controversial conclusions, which are caused by the measurement accuracy or personal explanation. The c/a axial ratio of ε-Ce has a maximum value at about 29 GPa, i.e., c/a ≈ 1.690.  相似文献   
8.
梁桁楠  马春丽  杜菲  崔啟良  邹广田 《中国物理 B》2013,22(1):16103-016103
The effect of external quasi-hydrostatic pressure on the inverse spinel structure of LiCuVO 4 was studied in this paper. High-pressure synchrotron X-ray diffraction and Raman spectroscopy measurements were carried out at room temperature up to 35.7 and 40.3 GPa, respectively. At a pressure of about 20 GPa, both Raman spectra and X-ray diffraction results indicate that LiCuVO4 was transformed into a monoclinic phase, which remained stable up to at least 35.7 GPa. Upon release of pressure, the high-pressure phase returned to the initial phase. The pressure dependence of the volume of low pressure orthorhombic phase and high-pressure monoclinic phase were described by a second-order Birch-Murnaghan equation of state, which yielded bulk modulus values of B 0 = 197(5) and 232(8) GPa, respectively. The results support the empirical suggestion that the oxide spinels have similar bulk modulus around 200 GPa.  相似文献   
9.
在室温条件下, 利用金刚石对顶砧超高压技术, 对氨的半水合物(2NH3·H2O) 进行了原位高压拉曼光谱研究, 采用红宝石荧光压标测压, 实验的最高压力为41.0 GPa。装入金刚石对顶砧样品腔的初始样品为液态的氨的半水合物, 当压力达到3.5 GPa时, 显微镜下观察到整个样品腔内均匀的出现块状晶体, 同时, 测量到的拉曼谱上出现许多新的拉曼峰。因此, 我们判断在此压力下液态的2NH3·H2O发生了液固相变。当压力增加到19.0 GPa左右时, 2NH3·H2O的拉曼频移随压力变化的曲线有拐点, 并且具有软化特性的N-H伸缩振动模式消失。我们分析这是因为在高压下, 通过O-H…N成键的II型氨分子发生了旋转, 所以2NH3·H2O在此压力下发生了一次固固相变。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号