首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
物理学   2篇
  2021年   1篇
  2016年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
油菜是我国第一大国产植物油来源,大田生产中需要施加适量的微肥以提高产量和品质。筛选出一种可提高油菜产量的微肥配方需要经过复杂的大田统计和产量测定,因此构建出能快速筛选微肥的模型十分重要。以高油酸油菜“帆鸣1号”为试验材料,使用地物波谱仪测定了不同微肥条件下全生育期的光谱反射率,并用乙醇提取法准确测定叶绿素含量。将光谱反射率、叶绿素含量和最终产量性状两两间进行相关性分析。产量测定表明,施加微肥可以提高油菜产量和蕾薹期时叶绿素的含量,使单株产量最高提高2%。光谱参数与叶绿素相关性分析表明,蕾薹期时叶绿素含量与光谱参数550和720 nm相关性较高,表明蕾薹期光谱参数可用于预测产量进而筛选出能提高油菜产量的微肥。叶绿素含量和产量相关性分析表明,蕾薹期时,叶绿素含量与产量相关性较高。光谱参数与产量相关分析表明,550和720 nm的光谱反射率与产量之间均呈显著负相关性。光谱参数与产量相关分析表明,550和720 nm的反射率与产量之间均呈显著负相关性。综合分析施肥量、光谱参数、产量和叶绿素变化可知,蕾薹时光谱参数550和720 nm与产量相关系数模拟的线性方程可用于微肥的筛选,线性方程分别为y=-32.362x+33.097,y=4.069 5x+35.386,y=28.849x+23.735,y=-19.023x+31.005,y=12.447x+24.586,R2均大于0.6。综合分析施肥量、光谱参数、产量和叶绿素变化,油菜生长至蕾薹期时光谱参数550和720 nm与产量相关系数模拟的线性方程R2≥0.6时的微肥配比可以使产量提升。本研究结果表明,蕾薹期光谱参数可用于预测产量进而筛选出能提高油菜产量的微肥,可增加样本量进一步检测相关性并开展后续验证。鉴于地物波谱检测技术具有过程高效,不使用化学试剂,无需对样本进行破坏性取样,成本低,该模型的建立对开展大规模高油酸油菜微肥配方的快速筛选具有重要意义,为筛选油菜微肥和促进油菜产量研究提供了理论基础。  相似文献   
2.
油菜光谱的多重分形分析及叶绿素诊断建模   总被引:1,自引:0,他引:1  
作物信息科学的重要内容是如何利用作物的信息对其进行无损营养诊断,光谱分析是一种有效可行的途径。对于油菜而言,冠层光谱的特征是描述其营养状况的重要指标。但由于原始光谱总是受到一些如环境、气候等外在因素的影响,其巨大的波动导致难以直接用于油菜生物量的诊断。然而,光谱的多重分形特征将保持相对稳定。为研究油菜冠层光谱与叶绿素含量的关系,基于多重分形理论,提出了基于油菜冠层光谱特征的叶绿素定量预测模型和定性识别模型。以24个移栽种植小区和24个直播种植小区的高油酸油菜苗期样本为试验对象。首先,利用流行的多重分形去趋势波动分析提取了6个不同波段范围内光谱的广义Hurst指数和质量指数及其他相关的特征参数,发现它们都呈现典型的多重分形特性。但两种不同种植方式下的光谱特征也存在差异。接着,通过多重分形特征参数与SPAD值的相关分析发现不同波段的光谱所含的有效信息不同。以多重分形特征参数建立单变量油菜叶片SPAD值预测模型,移栽方式、直播方式及混合样本的预测模型相对均方根误差均小于5%。最后,以多重分形特征组合建立识别模型,以Fisher线性判别法识别移栽和直播两种种植方式的最大约登指数为0.902 5,对应最敏感波段为350~1 350 nm。这项有意义的工作为预测油菜叶绿素提供了理论基础和实践方法,也为寻找敏感波段进行识别诊断提供了有效的途径。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号