首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   6篇
数学   1篇
物理学   6篇
  2016年   1篇
  2010年   3篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
众所周知,传统的信号压缩和重建遵循香农一耐奎斯特采样定律,即采样率必须至少为信号最高频率的两倍,才能保证在重建时不产生失真,这无疑将给信号采样,传输和存储过程带来越来越大的压力.随着科技的飞速发展,特别是近年来传感器技术获取数据能力提高,物联网等促使人类社会的数据规模遽增,大数据时代正式到来.大数据的规模效应给数据存储,传输,管理以及数据分析带来了极大的挑战.压缩采样应运而生.限制等距性(Restricted Isometry Property,RIP)在压缩传感中起着关键的作用.只有满足限制等距条件的压缩矩阵才能平稳恢复原始信号.RIP作为衡量矩阵是否能作为测量矩阵得到了认可,但是此理论的缺陷在于对任一矩阵,很难有通用,快速的算法来验证其是否满足RIP条件.很多学者尝试弱化RIP条件以找到测量矩阵构造的突破口.首先构造了新的限制等距条件δ_(1.5k)+θ_(k,1.5k)≤1,然后证明在这个条件下无噪声稀疏信号能被精确的恢复,并且噪声稀疏信号能被平稳的估计.最后,通过比较表明δ_(1.5k)+θ_(k,1.5k)≤1优于现存的条件.  相似文献   
2.
Passive control of chaotic system with multiple strange attractors   总被引:2,自引:0,他引:2       下载免费PDF全文
宋运忠  赵光宙  齐冬莲 《中国物理》2006,15(10):2266-2270
In this paper we present a new simple controller for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: the upper attractor (UA) and the lower attractor (LA). The controller design is based on the passive technique. The final structure of this controller for original stabilization has a simple nonlinear feedback form. Using a passive method, we prove the stability of a closed-loop system. Based on the controller derived from the passive principle, we investigate three different kinds of chaotic control of the system, separately: the original control forcing the chaotic motion to settle down to the origin from an arbitrary position of the phase space; the chaotic intra-attractor control for stabilizing the equilibrium points only belonging to the upper chaotic attractor or the lower chaotic one, and the inter-attractor control for compelling the chaotic oscillation from one basin to another one. Both theoretical analysis and simulation results verify the validity of the suggested method.  相似文献   
3.
宋运忠 《中国物理 B》2010,19(6):60513-060513
This paper introduces the concept of linear-control-based synchronization of coexisting attractor networks with time delays. Within the new framework, closed loop control for each dynamic node is realized through linear state feedback around its own arena in a decentralized way, where the feedback matrix is determined through consideration of the coordination of the node dynamics, the inner connected matrix and the outer connected matrix. Unlike previously existing results, the feedback gain matrix here is decoupled from the inner matrix; this not only guarantees the flexible choice of the gain matrix, but also leaves much space for inner matrix configuration. Synchronization of coexisting attractor networks with time delays is made possible in virtue of local interaction, which works in a distributed way between individual neighbours, and the linear feedback control for each node. Provided that the network is connected and balanced, synchronization will come true naturally, where theoretical proof is given via a Lyapunov function. For completeness, several illustrative examples are presented to further elucidate the novelty and efficacy of the proposed scheme.  相似文献   
4.
宋运忠  唐贻发 《中国物理 B》2010,19(2):20506-020506
This paper introduces the concept of hierarchical-control-based output synchronization of coexisting attractor networks. Within the new framework, each dynamic node is made passive at first utilizing intra-control around its own arena. Then each dynamic node is viewed as one agent, and on account of that, the solution of output synchronization of coexisting attractor networks is transformed into a multi-agent consensus problem, which is made possible by virtue of local interaction between individual neighbours; this distributed working way of coordination is coined as inter-control, which is only specified by the topological structure of the network. Provided that the network is connected and balanced, the output synchronization would come true naturally via synergy between intra and inter-control actions, where the rightness is proved theoretically via convex composite Lyapunov functions. For completeness, several illustrative examples are presented to further elucidate the novelty and efficacy of the proposed scheme.  相似文献   
5.
This paper introduces the concept of linear-control-based synchronization of coexisting attractor networks with time delays.Within the new framework,closed loop control for each dynamic node is realized through linear state feedback around its own arena in a decentralized way,where the feedback matrix is determined through consideration of the coordination of the node dynamics,the inner connected matrix and the outer connected matrix.Unlike previously existing results,the feedback gain matrix here is decoupled from the inner matrix;this not only guarantees the flexible choice of the gain matrix,but also leaves much space for inner matrix configuration.Synchronization of coexisting attractor networks with time delays is made possible in virtue of local interaction,which works in a distributed way between individual neighbours,and the linear feedback control for each node.Provided that the network is connected and balanced,synchronization will come true naturally,where theoretical proof is given via a Lyapunov function.For completeness,several illustrative examples are presented to further elucidate the novelty and efficacy of the proposed scheme.  相似文献   
6.
宋运忠 《中国物理》2007,16(7):1918-1922
Based on the open-plus-closed-loop (OPCL) control method a systematic and comprehensive controller is presented in this paper for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: the upper attractor (UA) and the lower attractor (LA). Results show that the final structure of the suggested controller for stabilization has a simple linear feedback form. To keep the integrity of the suggested approach, the globality proof of the basins of entrainment is also provided. In virtue of the OPCL technique, three different kinds of chaotic controls of the system are investigated, separately: the original control forcing the chaotic motion to settle down to the origin from an arbitrary position of the phase space; the chaotic intra-attractor control for stabilizing the equilibrium points only belonging to the upper chaotic attractor or the lower chaotic one; and the inter-attractor control for compelling the chaotic oscillation from one basin to another one. Both theoretical analysis and simulation results verify the validity of the proposed means.  相似文献   
7.
基于滑模变结构控制,研究了不确定非线性系统模型到达混沌反控制,保证经有限时间,使受控不确定非线性系统达到与混沌参考系统数学模型完全一致,并就到达的快速性,鲁棒性进行了讨论,最后以Lorenz混沌系统为混沌参考模型的情况进行了仿真,仿真结果表明所给方法是有效的. 关键词: 混沌系统 Lorenz系统 变结构控制 滑动流形  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号