首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
物理学   9篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2012年   4篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
在激光+脉冲GMAW复合焊接过程中,焊丝端部金属熔化产生大量的金属蒸汽,导致等离子体中电子、粒子的扩散现象加剧,使得激光的传输模式和工件对激光能量的吸收率和吸收模式发生变化。基于光谱分析的方法得到了复合焊接峰值状态的电子密度和温度分布,通过高速摄影分析了不同焊接模式下等离子体形态的变化,结合Beer-Lambert吸收定律计算了不同焊接模式下激光的吸收率。结果表明,在复合焊过程中,由于焊丝端部金属被熔化,焊丝的金属蒸汽进入激光等离子体内部,导致激光匙孔上方电子密度进一步提高,等离子体吸收激光能量能力增强,使得激光的传输效率从纯激光焊的94.16%降低到了CO_2激光+脉冲GMAW复合焊的85.84%。  相似文献   
2.
焊接电弧三维电子密度的测量对于焊接质量控制具有重要意义,通过光谱仪采集电弧弦方向特征谱线轮廓,利用多项式拟合对径向采集数据进行降噪及平滑处理,通过Abel逆变换法重新构建径向光谱发射系数谱线轮廓,采用傅里叶变换从重建光谱轮廓中分离出Lorentz线形,获得Stark展宽,最终计算了TIG焊电弧等离子体电子密度的三维空间分布。  相似文献   
3.
激光电弧复合焊中,热源间距会影响到等离子体物理特性,进而影响到焊接过程的稳定性及焊接质量。基于Boltzmann作图法和Stark展宽法研究了不同热源间距下的激光-脉冲GMAW复合焊峰值阶段的温度场和电子密度分布,并结合高速摄影手段分析了热源间距对温度和电子密度的影响规律。光谱诊断结果表明,随着热源间距的增大,激光等离子体的温度和电子密度都没有明显的变化;电弧温度出现下降,电弧电子密度则呈现先增高后降低的趋势。  相似文献   
4.
基于Boltzmann光谱法的焊接电弧温度场测量计算   总被引:1,自引:0,他引:1  
电弧等离子体是非均匀等离子体,其内部进行着复杂的能量和质量输运过程,等离子体的温度测量具有重要意义。Boltzmann作图法测量温度较谱线绝对强度法、标准温度法等测温方法更为方便。基于Boltzmann作图法原理,对TIG电弧进行实时的空间扫描,分析了谱线的选取原则,测量计算出TIG焊电弧等离子体的温度场分布。  相似文献   
5.
焊接电弧等离子体的物理特性直接决定了焊接接头的成形形貌,分析双组分保护气体的脉冲钨极惰性气体保护焊(P-TIG)动态电弧物理特性,为深入开展混合气体保护焊的焊缝成形物理过程研究提供理论基础。氩-氮混合气体保护焊电弧具有高热特性可以增加熔深,但在焊接前混合均匀的保护气体,引弧后气体浓度会重新分布,使电弧等离子体物理特性的实时动态变化特点变得复杂。光谱诊断是电弧等离子体物理特性测量的最重要手段,但对双组分气体保护的P-TIG焊电弧特性的研究仍需深入进行,特别是对于易引起缺陷的起弧过程,其动态物理特性亟需深入分析。针对氩-氮混合气体P-TIG焊的引弧过程,以P-TIG焊产生的氩-氮双组分电弧等离子体为研究对象,提出利用窄带滤光片与CCD相结合的高速摄影实验系统采集双组分电弧等离子的动态光谱信息,获取特征谱Ar Ⅰ 794.8 nm和N Ⅰ 904.6 nm的P-TIG焊电弧光谱强度动态分布;提出利用双元素双组分标准温度法计算P-TIG焊引弧过程中距离钨极下方1,2,3和4 mm位置处电弧等离子体的动态温度及浓度,定量分析80%Ar+20%N2保护的P-TIG焊从引弧至电弧稳定过程的电弧等离子体物理特性实时分布。实验结果表明,80%Ar+20%N2保护的P-TIG焊电弧强度、电弧温度及浓度的变化均与脉冲电流的变化同步,焊接电流在3 ms内达到稳定状态,而电弧等离子体的强度、温度及浓度需要更长时间达到平衡状态。从起弧到电弧等离子稳定燃烧的过程中,基值期间和峰值期间的电弧等离子体强度均呈现先升高再降低的趋势;由于阴极的热传导及电流密度的变化,使得电弧等离子体轴向位置的峰值温度及基值温度均出现迅速升高再缓慢降低的现象;由于粒子间碰撞及摩擦力的影响,使得电弧等离子体的峰值及基值期间氩的浓度均呈迅速减小再缓慢增加的趋势,且氩的浓度均低于焊前浓度。  相似文献   
6.
多丝熔化极气体保护焊中,由于电弧间的相互干扰,电弧工作状态不稳定,进而影响焊接过程稳定性和焊接质量。基于Boltzmann作图法测量电子温度场和Stark展宽法研究了多丝工作条件下电弧的电子温度分布和电子密度分布,结合高速摄影获得的定量化结果,给出电弧间干扰的定量化分析。光谱诊断结果表明双丝情况下,当加入电弧工作电流大于原电弧时,原电弧电子温度中心向新加入电弧稳定偏移,而且偏向新电弧一侧电子密度明显增加,而新电弧工作电流等于原电弧时,电弧电子温度和电子密度分布都反映出原电弧工作状态不稳定。三丝情况,由于加入第三根电弧,导致中间电弧电子温度分布变得复杂,而其电子密度分布接近于单丝工作情况。  相似文献   
7.
傅里叶变换法计算焊接电弧光谱Stark展宽研究   总被引:1,自引:0,他引:1  
利用电弧光谱,采用Stark展宽法计算电子密度是测量等离子体电子密度最有效、最准确的方法。而如何从众多展宽机制复合的谱线中分离出Stark展宽是应用Stark展宽法的难点。利用傅里叶变换从测得的光谱线形中分离出Lorentz线形,从而准确获得Stark展宽,并且计算了TIG焊电弧等离子体电子密度的分布。这种方法不需要准确测量电弧温度,不需要测量仪器展宽并且对数据有去噪作用。计算结果表明:在轴线上,TIG焊电弧电子密度随着离钨极距离的增大而减小,变化范围在1.21×1017~1.58×1017 cm-3之间;在径向,电子密度随离轴距离的增大而降低,在靠近钨极区域具有离轴最大的性质。  相似文献   
8.
理解脉冲GMAW焊电弧物理的动态特性对解释这一焊接方法的内在机理及获取优化控制策略有重要意义,通过在高速摄影前加窄带滤波片的方法研究了脉冲GMAW焊接过程中不同粒子的扩散行为,同时采用光谱仪研究了不同状态下金属与蒸汽保护气氛谱线的强度分布信息,采用气体状态方程、等离子体准中性方程、和Saha方程计算了脉冲GMAW焊接峰值和基值两种不同状态下的金属蒸汽浓度分布。研究结果显示,在峰值时刻,金属蒸汽被约束在电弧中心1mm左右的范围内,当电流从峰值跳转到基值时刻,金属蒸汽从中心扩散到电弧外围区域,峰值时刻中心金属浓度约为75%,而基值仅为35%左右。  相似文献   
9.
脉冲TIG焊由于其优越的特性而广泛应用于工业中,准确测量电弧温度对分析焊接过程有重要意义。论文基于光谱学理论计算了氩元素的粒子数密度与温度之间的关系曲线,计算了794.8nm氩原子谱线的发射系数与温度之间的关系曲线,利用高速摄影获得了794.8nm特征谱的电弧图像,根据Abel变换和标准温度法计算了脉冲TIG焊峰值时刻和基值时刻的电弧温度场分布。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号