首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   13篇
  国内免费   3篇
化学   6篇
力学   2篇
物理学   29篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2012年   6篇
  2011年   6篇
  2010年   2篇
  2009年   1篇
  2006年   5篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
排序方式: 共有37条查询结果,搜索用时 22 毫秒
1.
飞行目标在2.7和4.3 μm谱段附近具有较强的红外辐射,因此这两个波段是探测飞行目标的最佳波段, 但是由于这两个波段并非大气窗口,不被大多数遥感器包含。对这两个谱段的典型地物特性开展研究具有重要的价值,但由于缺乏必要的数据获取能力,经常面临数据缺乏的问题。世界范围内频频有各种程度的火山爆发,火山爆发时温度较高的火山口,是否对于天基红外探测系统典型目标探测有影响,其影响程度如何一直缺乏相关的分析和研究。基于大气辐射传输理论,利用多元统计分析得到波段转换模型,使用气象卫星已有波段获得红外吸收谱段数据。将火点像元视为明火和背景的混合像元,采用目标与背景分离的方式描述高温目标像元的热辐射。对高温目标辐射量,在气溶胶模式固定的情况下,选取观测天顶角、大气可降水量、大气廓线为自变量影响因子。对于背景辐射亮度关系,选取观测天顶角、大气可降水量、大气廓线、背景温度为自变量影响因子, 利用多元统计,建立相关模型。利用对地面热状态非常敏感的风云三号可见光红外扫描辐射计第3通道数据的统计特征探测火山口,获取高温目标在特定波段的表观多维特征并定量分析。火山的多维特征分析,主要从时间和空间两个维度展开。时间维度是对同一火山在不同时间的数据进行分析,空间维度上,主要统计火山口的辐射亮度和亮度温度的空间分布特征。一般气象卫星分辨率较低,单纯利用像元个数表示火山面积, 明显夸大了火山的实际面积,所以基于亚像元特性对火山进行分析,将混合像元火点视为明火和背景的组合,运用线性光谱混合模型,通过混合像元的辐射率精确计算火山高温点的面积和温度,提高定量分析精度。分析结果表明: 通过仿真手段结合多元统计分析方法建立高温目标的波段转换模型是一种可行的预研手段。在2.7~2.95 μm谱段,火山口在弱背景环境下可能会对高温目标造成干扰,而在4.2~4.45 μm谱段,火山口能量远高于一般地表类型,是不可忽视的干扰。  相似文献   
2.
近年来,微流控纸芯片由于低成本、便携化、检测快等优点,在需要快速检测的环境分析领域中展现出了巨大的应用前景。该综述从微流控纸芯片在环境分析中的应用角度,总结归纳了微流控纸芯片在环境分析中的最新研究进展,并展望了其在未来的发展趋势与挑战。论文内容引用150余篇源于科学引文索引(SCI)与中文核心期刊中的相关论文。该综述包括微流控纸芯片在环境检测中的优势与制造方法介绍;电化学法、荧光法、比色法、表面增强拉曼法、集成传感法等基于纸芯片的先进分析方法介绍;根据环境分析目标物种类,如重金属离子、营养盐、农药、微生物、抗生素以及其他污染物等,对纸芯片的最新应用现状进行了举例评述;基于微流控纸芯片的环境分析研究的未来发展趋势和前景展望。通过综述近期相关研究,表明微流控纸芯片从提出至今虽然只有十几年的发展历程,但其在环境分析研究中的发展却十分迅速。微流控纸芯片可以根据不同的环境条件和检测要求灵活选择制作与分析方法,实现最佳的检测效果。但是微流控纸芯片也面临一些挑战,如纸张机械强度不足、流体控制程度不佳等问题。这些问题指出了微流控纸芯片在环境检测领域的发展趋势,相信随着不断深入的研究,纸芯片将会在未来的环境分析中发挥更大作用。  相似文献   
3.
采用Davidson校正的多参考组态相互作用方法(MRCI+Q)和多参考平均二次耦合团簇方法(MRAQCC)结合基组ROOS-ANO-TZP得到了LiBe+分子基态(x1∑+)以及六个低电子激发态(a3Σ+,b3∏,A1∑+,B1∏,c3∑+,C1∑+)的势能曲线(PECs).计算结果表明:X1∑+,a3∑+,b3∏和...  相似文献   
4.
 设计了一种带有反射腔的能在X波段实现稳定双频输出的圆柱结构相对论返波管,采用2.5维相对论全电磁PIC粒子模拟软件行粒子模拟研究。仿真结果表明:在输入电压433 kV、引导磁场2.2 T的条件下,实现了9.53,10.09 GHz的双频稳定输出,平均输出功率340 MW,平均功率效率24.1%。  相似文献   
5.
报道了利用脉宽可调的光子晶体光纤飞秒激光放大器抽运矩形波导结构的GaP晶体太赫兹(THz) 发射器产生频率可调谐的超快THz脉冲.非线性晶体中光整流过程产生的THz辐射频率随抽运光脉冲宽度而 变化. GaP波导THz发射器可通过波导的几何尺寸来控制色散,以达到增加有效作用长度和提高输出功率的目的. 不同横截面尺寸的波导型发射器的THz辐射峰值频率随相位匹配条件的改变而改变,加以脉宽调节技术, 可以在大频谱范围获得频谱精细可调的THz脉冲.实验中在1 mm×0.7 mm的波导型THz发射器中获得了 频率可调谐的THz脉冲.提出实现THz辐射频率大范围调谐的GaP波导型阵列发射器的实施方案.  相似文献   
6.
A new mode patter's demodulation technique is put forward. Researches of experiment and theory show that the coupling efficiency of two kinds of different fibers depends on the relative offset between the two fibers when the core diameter of the information pick-up fiber is a little smaller than the major semi-axes of the elliptical-core two-mode fiber. Especially, when the relative offsetδ≈1, fusing splice coupling efficiency reaches peak value. Furthermore, based on the new demodulation scheme, the sine voltage signal applied on the piezoelectric lead zirconate titanate (PZT) is obtained and the detection precision of the system is within±0.2% when the voltage changes between 0.1 and 20 V.  相似文献   
7.
对基于CoFe2O4载氧体的生物质化学链气化反应进行了热力学分析,研究了载氧体添加量、温度及水蒸气含量对气化反应特性的影响。同时应用热重分析仪对CoFe2O4和生物质的气化反应特性进行了实验研究,并利用XRD对反应前后载氧体的物相组成进行分析。热力学研究表明,CoFe2O4在气化反应中能够提供晶格氧,有效促进生物质气化,提高碳转化率。随着反应温度升高,合成气中H2和CO的含量增加,CO2的含量减少。随着水蒸气含量增加,H2和CO2含量会增加,CO含量减少。添加水蒸气能够提高合成气中H2和CO的比值,改善合成气的品质。热重实验及XRD结果表明,钴优先于铁被还原,钴与铁存在协同作用,钴能够促进铁的进一步还原。随着载氧体添加量的增加,载氧体被还原的程度会降低,载氧体与生物质的最佳质量比为0.8。  相似文献   
8.
提出了一种新型的回收LNG冷能的两级膨胀朗肯动力循环,可以乙烯或乙烷作为工质。此工艺流程采用多股流低温板翅式换热器(MSCHE)作为主要设备,使工质两级膨胀并采用回热过程,可以使循环的冷能利用效率得到明显提高。针对此工艺分别以乙烯或乙烷为工质,与LNG直接膨胀结合和不结合,共四种方案采用HYSYS软件进行工艺模拟,并对模拟结果进行了比较和分析,可得出无LNG膨胀的乙烯两级膨胀工艺流程最为合理,其冷能和火用的利用率可以分别达到19.67%和21.75%。  相似文献   
9.
利用锁相热像方法定量测量了光学镀膜的吸收率。待测薄膜吸收周期调制的激光能量,在表面形成热波,将红外相机记录的热分布信号进行锁相相关处理,获得信噪比提高的热图像。采用标准吸收样品对系统进行定标,可获得光热信号幅度与样品吸收率之间的定量联系,进而在相同实验条件下测量待测样品,可通过光热信号直接计算获得其绝对吸收率。在1 060 nm波长处开展了实验研究,测量获得了不同厚度Nb2O5镀膜的吸收率数值,实测的吸收可达80 ppm。  相似文献   
10.
采用溶胶-凝胶燃烧法制备了铜基氧载体CuO/CuAl_2O_4,利用热重分析仪研究了铜基氧载体的释氧性能,并在固定床反应器内对铜基氧载体的释氧和吸氧特性进行了实验研究。结果表明,CO_2气氛下,铜基氧载体能够释放出O_2,随反应温度增加,O_2-CO_2混合气体中O_2含世增加,反应时间减少.释氧后的铜基氧载体能够吸收N_2-O_2混合气中的O_2,吸氧速率及转化率同时受到热力学和动力学控制.880℃为铜基氧载体最佳释氧与吸氧温度。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号