首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   8篇
力学   4篇
物理学   12篇
  2019年   1篇
  2015年   1篇
  2013年   3篇
  2012年   1篇
  2011年   4篇
  2010年   4篇
  2009年   1篇
  2002年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
针对珞瑛厂引进法国Stein公司360MW的W型火焰锅炉进行了冷态模化研究,采用热线风速仪对炉内流场进行测试,研究了燃烧器配风(改变各次风动量流率比)对炉空气动力场的影响规律,并对所得结果进行了比较与分析。研究表明,燃烧器各次风的合理配比对W型火焰锅炉燃烧工况的组织是非常重要的。  相似文献   
2.
The effects of the airflow on plasma-assisted combustion actuator(PACA) characteristics are studied in detail. The plasma is characterized electrically, as well as optically with a spectrometer. Our results show that the airflow has an obvious influence on the PACA characteristics. The breakdown voltage and vibrational temperature decrease, while the discharge power increases compared with the stationary airflow. The memory effect of metastable state species and the transportation characteristics of charged particles in microdischarge channel are the dominant causes for the variations of the breakdown voltage and discharge power, respectively, and the vibrational temperature calculated in this work can describe the electron energy of the dielectric barrier discharge plasma in PACA. These results offer new perspectives for the use of PACA in plasma-assisted combustion.  相似文献   
3.
Based on the nonequilibrium plasma dynamics of air discharge, a dynamic model of zero-dimensional plasma is established by combining the component density equation, the Boltzmann equation, and the energy transfer equation. The evolution properties of nanosecond pulse discharge (NPD) plasma under different air pressures are calculated. The results show that the air pressure has significant impacts on the NPD products and the peak values of particle number density for particles such as O atoms, O3 molecules, N2(A3) molecules in excited states, and NO molecules. It increases at first and then decreases with the increase of air pressure. On the other hand, the peak values of particle number density for N2(B3) and N2(C3) molecules in excited states are only slightly affected by the air pressure.  相似文献   
4.
直流电压等离子体点火器点火特性研究   总被引:1,自引:0,他引:1  
使用自行设计的等离子体点火装置,对极间电流随进口氩气压力的变化规律以及不同进口氩气压力和工作电流条件下等离子体点火器出口射流特性进行了实验研究。利用四通道CCD光谱仪测量了点火器出口处的发射光谱特征,并计算了等离子体的电子温度。结果表明,极间电流随进口氩气压力的增大而逐渐减小,等离子体点火器的射流长度随进口氩气流量的增大先增大后减小,随工作电流的增大而增大,等离子体点火器的工作电流随进口氩气流量的增大而减小,随电源输出电流增大而增大,等离子体射流的电子温度随氩气流量的增大而降低,随工作电流的增大而升高。所得结果对等离子体点火系统在航空发动机的实际应用具有一定的指导意义和参考价值。  相似文献   
5.
不同初始温度下H2/O2混合物等离子体的演化   总被引:3,自引:0,他引:3       下载免费PDF全文
兰宇丹  何立明  丁伟  王峰 《物理学报》2010,59(4):2617-2621
本文对不同初始温度下,H2/O2混合物等离子体中主要粒子随时间发展的演化规律进行了数值模拟,得到了放电后等离子体中主要带电粒子和中性粒子密度随时间的变化规律.计算结果表明,H2/O2混合物等离子体中主要活性粒子密度随时间的增加减小,化学反应达到平衡所需的时间随初始温度升高逐渐减少. 关键词: 等离子体 化学过程 数值模拟 演化  相似文献   
6.
横向爆震射流起爆爆震过程的数值模拟   总被引:6,自引:0,他引:6  
对氢气/空气化学恰当比混合物中横向喷射的爆震射流在爆震室中起爆爆震波的过程和机理进行了数值模拟,并探讨了爆震射流位置和填充速度对其的影响。结果表明:爆震波分叉传播后会发生衍射并衰减,但随后可在联焰管壁面产生高温高压区域,引发二次起爆。且联焰管距离爆震室推力壁越小,其形成的壁面效应越有助于爆震形成;填充速度越大,爆震波形成位置越靠前。  相似文献   
7.
杜宏亮  何立明  兰宇丹  王峰 《物理学报》2011,60(11):115201-115201
采用零维等离子体动力学模型,计算了不同约化场强条件下N2/O2放电等离子体的演化特性.结果表明,平均电子能量与约化场强有着近似的线性关系,在约化场强为100 Td时,平均电子能量约为2.6 eV、最大电子能量达35 eV;约化场强是影响电子能量函数分布的主要因素.气体放电过程结束后,振动激发态氮分子的粒子数浓度不再变化,电子激发态的氮分子、原子和氧原子的粒子数浓度达到一峰值后开始降低;放电结束后的氧原子通过复合反应生成臭氧.约化场强升高,由于低能电子减少的影响,振动激发态氮分子的粒子数浓度降低,当约化场强由50 Td增加75 Td,100 Td时,粒子数浓度由3.83×1011 cm-3降至1.98×1011 cm-3和1.77×1011 cm-3,其他粒子浓度则相应增大. 关键词: 等离子体 约化场强 粒子演化 数值模拟  相似文献   
8.
兰宇丹  何立明  丁伟  王峰 《中国物理 B》2010,19(4):2617-2621
本文对不同初始温度下,H2/O2混合物等离子体中主要粒子随时间发展的演化规律进行了数值模拟,得到了放电后等离子体中主要带电粒子和中性粒子密度随时间的变化规律.计算结果表明,H2/O2混合物等离子体中主要活性粒子密度随时间的增加减小,化学反应达到平衡所需的时间随初始温度升高逐渐减少.  相似文献   
9.
超音速等离子体点火过程的三维数值模拟   总被引:6,自引:0,他引:6       下载免费PDF全文
为了研究等离子体点燃超音速混合气流的过程,设计并验证了超音速燃烧室的三维计算模型,计算出了燃烧室等离子体点火时的流场参数和化学反应规律,分析了等离子体点火对燃烧室内燃烧的影响。计算结果表明:高温等离子体射流的滞止作用通过增加混合气在燃烧室内的停留时间提高了点火效率; 等离子体点火时燃烧区域的压力扩散比较充分,内部为压力相对平衡的低速流动; 高温等离子体射流高速射向混合气流时产生的速度矢量偏移扩大了点火面积,从而使点火效率得到提高; 氢气、空气燃烧的燃烧产物主要是水,燃烧区域局部温度主要受局部放热反应的影响。  相似文献   
10.
为了研究喷管结构形式对爆震发动机性能的影响,本文以氢气和氧气混合物为例,对不同喷管结构形式的爆震发动机工作过程进行了数值模拟。模拟结果表明:采用收敛型喷管可以增加爆震管内压力,但会造成喷管内的负推力;采用扩张型喷管会使得喷管内的压力迅速下降,但可以提供正推力;采用收扩型喷管时喷管的冲量一般较低,但爆震管的冲量会有提升,可以显著提高爆震发动机性能。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号