排序方式: 共有2条查询结果,搜索用时 6 毫秒
1
1.
F.T. Zohra M.J. Uddin A.I.M. Ismail O. Anwar Bég A. Kadir 《Chinese Journal of Physics (Taipei)》2018,56(1):432-448
A mathematical model for two dimensional steady laminar natural convective anisotropic slip boundary layer flows from a rotating vertical cone embedded in ethylene glycol bionanofluid is presented. The influence of Stefan blowing is also taken into account. Four different non-particles namely Copper (Cu), Alumina (Al2O3), Copper Oxide (Cuo), Titanium Oxide (TiO2) are explored. Suitable similarity transformations are used to convert the governing equations into non-linear ordinary differential equations. These are then solved numerically, with appropriate boundary conditions, utilizing an implicit finite difference method (the BVP5C code in MATLAB). During computation Sc, Lb, Le and Lb are presented as unity, whilst is taken as 151. The effects of the governing parameters on the dimensionless velocities, temperature, nanoparticle volume fraction, density of motile microorganisms as well as on the local skin friction, local Nusselt, Sherwood number and motile micro-organism number density are thoroughly examined via tables and graphs. It is found that the skin friction factor increases with tangential slip, magnetic field and Schmidt number whilst it decreases with blowing parameter and spin parameters. It is further observed that both the friction and heat transfer rates are highest for copper nanoparticles and lowest for TiO2nanoparticles. Validation of the BVP5C numerical solutions with published results for several special cases of the general model is included. The study is relevant to electro-conductive bio-nano-materials processing. 相似文献
2.
The tear behavior of unvulcanized natural rubber has been studied by using established techniques normally adopted for the study of vulcanized rubbers. Unvulcanized rubber has been found to tear in a relatively steady manner, in contrast to the stick-slip tear behavior of the vulcanized rubber, the tearing energy being dependent on the rate of tearing. Crystallization seems to be an important factor in determining the tear behavior since it has not been found possible to tear unvulcanized SBR under the same conditions. The effect of the pronounced imperfect elastic nature of the material was studied under conditions where the driving force for tearing was solely governed by the rate of release of elastic energy. Under such conditions, it has been found that the tearing energy is determined not by the strain energy required to stretch the material but by the energy which can be recovered on retraction. The set developed in the test piece, due to imperfect elasticity, has also to be taken into account. 相似文献
1