首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1686篇
  免费   188篇
  国内免费   688篇
化学   1799篇
晶体学   22篇
力学   50篇
综合类   4篇
数学   6篇
物理学   681篇
  2023年   30篇
  2022年   39篇
  2021年   72篇
  2020年   103篇
  2019年   90篇
  2018年   88篇
  2017年   96篇
  2016年   107篇
  2015年   111篇
  2014年   130篇
  2013年   185篇
  2012年   153篇
  2011年   188篇
  2010年   156篇
  2009年   163篇
  2008年   147篇
  2007年   161篇
  2006年   121篇
  2005年   123篇
  2004年   93篇
  2003年   70篇
  2002年   49篇
  2001年   27篇
  2000年   23篇
  1999年   22篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1990年   3篇
排序方式: 共有2562条查询结果,搜索用时 15 毫秒
1.
采用时域有限差分(FDTD)法研究Au纳米颗粒@碳球(AuNPs@CS)复合结构的光吸收控制。发现Au纳米颗粒@碳球复合结构中Au颗粒的位置可以控制复合结构光吸收。模型计算中选取两粒Au纳米颗粒以最佳深度(0 nm)嵌入碳球表面。当两粒Au颗粒球心与碳球球心夹角为22.5°和45°时,复合结构光吸收较单一碳球光吸收明显增强;当夹角为315°、270°、180°、90°时,光吸收增量逐渐减小;当夹角为337.5°时,光吸收量低于单一碳球。这一结果主要归因于Au纳米颗粒位置变化可引起表面等离子体光强度和光散射方向的变化。改变碳球表面Au纳米颗粒的数量和位置,可以进一步调节AuNPs@CS复合结构的光吸收。  相似文献   
2.
铂纳米颗粒在汽车行业中被广泛用作汽车尾气催化剂。随着铂纳米颗粒在工业生产中的广泛应用,它在环境中广泛分布并可能从植物累积进入食物链中。因此,建立一种在农产品中的定量分析方法是至关重要的。以酶消解的前处理方法结合单颗粒-电感耦合等离子体质谱法(Single particle ICP-MS,SP-ICP-MS)测定农产品中纳米铂颗粒(PtNPs)粒径分布及颗粒数量浓度。通过优化前处理提取条件,当Macerozyme R-10酶为10 mg、柠檬酸缓冲溶液浓度为5 mmol/L、提取时间36 h时,农产品中PtNPs提取效果较高。PtNPs粒径检出限为20 nm,颗粒浓度检出限为5×105 particle/L,铂颗粒浓度回收率在(81±3)%~(91±4)%,加标后平均粒径(41±3)~(47±2)nm,与50 nm PtNPs标准溶液粒径接近。方法操作简单、检出限低、准确度高,适用于农产品中PtNPs定量分析,为客观评价农产品铂纳米毒性效应提供可靠的分析技术。  相似文献   
3.
Addressing arsenite pollution in groundwater has drawn great attention. It is attractive to pre-oxidize highly mobile As(III) to relatively low-toxic As(V) with a subsequent adsorption separation process. Herein, BiOI anchoring on γ-Fe2O3 is performed to synthesize BiOI/γ-Fe2O3 core–shell nanoparticles for efficient removal of As(III) via a simultaneous photocatalytic oxidization–adsorption process. The physical and chemical structures of BiOI/γ-Fe2O3 are investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction measurements. The photoluminescence and electron spin resonance (ESR) characterization were employed to ascertain the possible reaction mechanism of visible-light-driven photocatalytic oxidation of As(III). Such BiOI/γ-Fe2O3 delivers a superior As(III) removal capability under visible light irradiation with an arsenic removal efficiency of 99.8% within 180 min, higher than those of BiOCl/γ-Fe2O3 (81.7%) and BiOBr/γ-Fe2O3 (98.9%). The optimal BiOI/γ-Fe2O3 (molar ratio of 2:1) is obtained by rationally adjusting the molar ratio of BiOI to γ-Fe2O3. The as-synthesized BiOI/γ-Fe2O3 performs well in a wide pH range of 2–8. Only coexisting PO43? anions have a significant effect on the As(III) removal. The free radical trapping experiment and ESR results demonstrate that the ?O2? and h+ are the main active substances for the photocatalytic oxidation of As(III) on BiOI/γ-Fe2O3. This work not only gives a novel magnetic core–shell nanoparticle photocatalyst for efficient photocatalytic oxidation and adsorption of As(III) but also offers a new strategy to rationally design BiOX for its related practical applications.  相似文献   
4.
Several p H-dependent processes and reactions take place in the human body;hence,the p H of body fluids is the best indicator of disturbed health conditions.However,accurate and real-time diagnosis of the p H of body fluids is complicated because of limited commercially available p H sensors.Hence,we aimed to prepare a flexible,transparent,disposable,userfriendly,and economic strip-based solid-state p H sensor using palladium nanoparticles(Pd NPs)/N-doped carbon(NC)composite material.The Pd NPs/NC composite material was synthesized using wool keratin(WK)as a precursor.The insitu prepared Pd NPs played a key role in the controlled switching of protein structure to the N-doped carbon skeleton withπ–πarrangement at the mesoscale level,which mimics the A–B type polymeric structure,and hence,is highly susceptible to H+ions.The optimized carbonization condition in the presence of Pd NPs showed that the material obtained using a modified Ag/Ag Cl reference electrode had the highest p H sensitivity with excellent stability and durability.The optimized p H sensor showed high specificity and selectivity with a sensitivity of 55 m V/p H unit and a relative standard deviation of 0.79%.This study is the first to synthesize Pd NPs using WK as a stabilizing and reducing agent.The applicability of the sensor was investigated for biological samples,namely,saliva and gastric juices.The proposed protocol and material have implications in solid-state chemistry,where biological material will be the best choice for the synthesis of materials with anticipated performance.  相似文献   
5.
Combining photothermal therapy and radiotherapy(PTT-RT) with reducing tumor hypoxia acts as an important antitumor modality. However, it is a great challenge to realize photothermal therapy, radiotherapy and exogenous oxygen supply in one nanosystem. To realize a combination of the three functions, we fabricated a red blood cell membrane(RBCm)-camouflaged, red blood cell content(RBCc) and the copper sulfide(CuS) co-loaded dendritic large pore mesoporous silica nanoparticle(DLMSN/CuS/RBCc/ RBCm). The cell membrane coating endowed the nanoparticles with good stability in the physiological environment, and CuS allowed the nanoparticle exhibiting good photothermal and radiosensitization properties. RBCc loaded nanoparticle DLMSN/CuS/RBCc enhanced superior anti-tumor effect than DLMSN/CuS during combined PTT-RT therapy because the introduction of RBCc increased the exogenous oxygen supply. The in vitro study further demonstrated that the combination of photothermal therapy and radiotherapy induced superior antitumor efficacy than single therapy. Our work thus presents a unique multifunctional nanoscale platform favorable for combined PTT and RT.  相似文献   
6.
Gold nanoparticles with different mean sizes were formed on antimony-doped tin oxide nanocrystals by the temperature-varied deposition-precipitation method (Au/ATO NCs). Au/ATO NCs possess strong absorption in the near-infrared region due to Drude excitation in addition to the localized surface plasmon resonance (LSPR) of AuNPs around 530 nm. Au/ATO NCs show thermally activated catalytic activity for the oxidation of cinnamyl alcohol to cinnamaldehyde by hydrogen peroxide. The catalytic activity increases with a decrease in the mean Au particle size (dAu) at 5.3 nm≤dAu≤8.2 nm. Light irradiation (λex >660 nm, ∼0.5 sun) of Au/ATO NCs increases the rate of reaction by more than twice with ∼95 % selectivity. Kinetic analyses indicated that the striking enhancement of the reaction stems from the rise in the temperature near the catalyst surface of ∼30 K due to the photothermal effect of the ATO NCs.  相似文献   
7.
The abundance of bacterial effectors have inspired us to explore their potential in rewiring malignant cell signaling. Their incapability for entering cells, however, hinders such application. Herein we developed a cationic lipid-based high throughput library screening platform for effective intracellular delivery of bacterial effectors. As the misregulated MAPK signaling is a hallmark of many types of cancer, we turned to the Shigella effector OspF which irreversibly inactivates ERK, the terminal component of MAPK cascade. We created a function-based screening assay to obtain AMPA-O16B lipid nanoparticles for effective OspF intracellular delivery, which inhibited the malignant MAPK signaling and tumor growth in vitro and in vivo. Furthermore, the optimized lipid nanoparticle formulation can deliver OspF to modulate the immunosuppressive responses in macrophages. Our work is a general strategy to explore the therapeutic potentials of naturally evolved bacterial effectors.  相似文献   
8.
In the present work, novel 5-((1-benzyl-1,2,3-triazol-4-yl)methoxybenzylidene)-2-(arylamino)thiazol-4-one thiazolone incorporated triazole derivatives have been designed as tyrosinase inhibitors. The compounds were synthesized through click reaction in good yield. Moreover, the antityrosinas activity of the synthesized derivatives was evaluated. In the search for establishing a click copper-catalyzed azide/alkyne cycloaddition (CuAAC) reaction under strict conditions, in terms of a novel air-stable, a recyclable and efficient magnetic catalyst was planned for new triazole derivatives as a well-organized copper iodide supported on the functionalized Fe3O4@SiO2 core-shell (CuI/Fe3O4@SiO2(TMS-EDTA) nanoparticles). The engineered nanocatalyst synthesized for the first time and characterized by different methods, including FT-IR spectroscopy, XRD, FESEM, EDX, TEM, TGA, and BET analysis. The excellent catalytic performance in ethanol with high surface area (351.7 m2g−1) and short reaction time for diverse functional groups (120–200 min), no use of toxic solvents, reusability of the catalyst, and using eco-friendly conditions are the advantageous of this work. Moreover,the nanocatalyst can be used at least five times without any significant decrease in the yield of the reaction. The thiazolidine-triazole derivatives 9a , 9c , 9e , and 9 g showed promising tyrosinase inhibitory activity with IC50 values in the range of 5.90–9.81 μM. The compounds were found to be considerably more potent tyrosinase inhibitors than the reference inhibitor kojic acid (IC50 = 18.36 μM).  相似文献   
9.
《Current Applied Physics》2020,20(7):853-861
Among the conventional metallic inks used in the printing process, silver exhibits high conductivity and thermal stability. Nevertheless, due to the high cost of silver, it cannot be extensively used for the fabrication of inks. As a competitive alternative, copper can be considered as a substitute for silver; however, copper ink oxidizes under certain atmospheric conditions. To meet these shortcomings, a cost effective, highly conductive, and oxidation-free copper-based ink has been synthesized in this study, wherein, oxidation of the copper particles in the copper-based ink was prevented by using copper complexes. The copper ink thus fabricated was printed on chemically treated Si/SiO2 substrates followed by the characterization of the printed copper films. The results of this study confirmed that the synthesized copper ink exhibited properties suitable for its use in the inkjet printing process for fabrication of various electronic devices.  相似文献   
10.
丁东  杨仕娥  陈永生  郜小勇  谷锦华  卢景霄 《物理学报》2015,64(24):248801-248801
利用价格低廉、性能优良的金属纳米颗粒增强太阳电池的光吸收具有广阔的应用前景. 通过建立三维数值模型, 模拟了微晶硅薄膜电池前表面周期性分布的Al纳米颗粒阵列对电池光吸收的影响, 并对其结构参数进行了优化. 模拟结果表明: 对于球状Al纳米颗粒阵列, 影响电池光吸收的关键参数是周期P与半径R的比值, 或者说是颗粒的表面覆盖度; 当P/R=4–5时, 总的光吸收较参考电池提高可达20%. 与球状颗粒相比, 优化后的半球状Al纳米颗粒阵列可获得更好的陷光效果, 但后者对颗粒半径R的变化较敏感. 另外, 结合电场分布, 对电池光吸收增强的物理机理进行了分析.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号