首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1006篇
  免费   40篇
  国内免费   3篇
化学   544篇
晶体学   10篇
力学   83篇
数学   83篇
物理学   329篇
  2023年   18篇
  2022年   37篇
  2021年   48篇
  2020年   68篇
  2019年   40篇
  2018年   57篇
  2017年   80篇
  2016年   62篇
  2015年   70篇
  2014年   86篇
  2013年   83篇
  2012年   106篇
  2011年   67篇
  2010年   56篇
  2009年   40篇
  2008年   27篇
  2007年   31篇
  2006年   31篇
  2005年   16篇
  2004年   8篇
  2003年   2篇
  2002年   5篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   3篇
  1993年   1篇
排序方式: 共有1049条查询结果,搜索用时 15 毫秒
1.
An innovative application of the solvent evaporation technique was suggested. Solvent evaporation technique is a technique for drug encapsulation and nanosphere preparation. The widely used technique is also facing the problem of low actual drug entrapment percent, which is not economic from the industrial view. The goal of this work is trying to use the advantage of this technique concerning the product sphericity and the ability to control particle size, to prepare a drug as pure crystals spheres. Ibuprofen is selected as a model drug. The spheres are formed by using Polyvinyl pyrrolidone (PVP) or Polyethylene glycol (PEG) as an anti-aggregating agent but not formed on using tween or span. Particle size and actual drug content depend on the concentrations the anti-aggregating agent used. Surfaces of the drug crystal spheres are porous with empty sphere internal structure on using PVP but spongy and rough on using PEG. The drug has its identity chemical form in the drug crystal spheres. IR scan of spheres prepared on using PEG showed a characteristic ether peak. DSC showed melting endothermic peak of PEG, but X-ray showed minor change in the drug crystal patterns. Drug release profiles from crystal spheres prepared with the same anti-aggregating agent are close to each other. The drug release profiles from drug crystal spheres prepared by using PEG are more controlled than that prepared by using PVP. The drug release mechanism is diffusion. It was concluded that, the same technique could be suggested for preparation of other biomedical material in pure crystals spheres with controlled particle size. These properties may encourage to prepare very small particles with spherical shape for inhalation or injection as an innovative particle technology application for the widely used technique.  相似文献   
2.
The hotspot problem is one of the primary challenges in the wireless sensor networks (WSNs) because it isolates the sink node from the remaining part of the WSN. A mobile sink (MS)-based data acquisition strategy mitigates the hotspot problem, but the traditional MS-based data gathering approaches do not resolve the issue. However, the conventional techniques follow a fixed order of visits and static traversal of the MS. In this context, this paper uses a modified version of the ant colony optimization strategy for the data collected through a MS to mitigate the hotspot problem in the WSNs while improving the energy efficiency, network lifetime, throughput by reducing the packet loss and delay. In our work, we initially construct a forwarded load spanning tree to estimate the freight of each node in the WSN. Further, we choose RPs and their path simultaneously using the modified ACO algorithm by considering the forward loads, remaining energy, distance, etc. The proposed work also adopts the virtual RP selection strategy void unnecessary data exchanges between the nodes and RPs. Hence, it reduces the burden on relay nodes and optimize the energy usage among the nodes. We compare our approach with the recent ACO-based algorithms, and our approach outperforms them.  相似文献   
3.
This study investigates the potential of using small amounts of ionic liquids (IL) to enhance ultrasound-assisted extraction of lipids content from green microalgae. Three imidazolium-based ILs (butyl, octyl and dodecyl), each of them with two anions (bromide and acetate) were tested as additives. Viscosity and surface tension of the ILs aqueous mixtures were analyzed to determine the influence of ILs’ anions and alkyl chain length, whereas KI dosimetry experiments were used as an indicator of radicals formation. A key finding suggests that the small addition of ILs improves the ultrasonication either by enhancing the viscosity and reducing the water surface tension, leading to a more powerful acoustic cavitation process or by increasing HO° production likely to oxidize the microalgae cells membranes, and consequently disrupting them on a more efficient manner. KI dosimetry also revealed that long ILs alkyl chain is detrimental. This experimental observation is confirmed thus strengthened as the yield of extracted lipids from green microalgae has shown an incremental trend when the IL concentration also increased. These hypotheses are currently under investigation to spot detailed impact of ILs on cavitation process.  相似文献   
4.
5.
Journal of Thermal Analysis and Calorimetry - The need for better thermal–hydraulic performance of heat exchangers remains the primary reason for further improving the design of heat...  相似文献   
6.
Journal of Thermal Analysis and Calorimetry - In situ composites are today being considered for industrial use, owing to the fewer production steps involved, lower production cost, and better...  相似文献   
7.
The characteristics of heat transfer in the three-dimensional stagnationpoint flow past a stretching/shrinking surface of the Al_2O_3-Cu/H_2O hybrid nanofluid with anisotropic slip are investigated. The partial differential equations are converted into a system of ordinary differential equations by valid similarity transformations. The simplified mathematical model is solved computationally by the bvp4c approach in the MATLAB operating system. This solving method is capable of generating more than one solutions when suitable initial guesses are proposed. The results are proven to have dual solutions, which consequently lead to the application of a stability analysis that verifies the achievability of the first solution. The findings reveal infinite values of the dual solutions at several measured parameters causing the non-appearance of the turning points and the critical values. The skin friction increases with the addition of nanoparticles, while the escalation of the anisotropic slip effect causes a reduction in the heat transfer rate.  相似文献   
8.
Chemotherapy is the most common treatment for all cancer patients but this treatment poses many side effects due to lack of drug’s selectivity. To overcome this problem, utilizing a better and more effective delivery agent is the solution. Mesoporous silica nanoparticles (MSNs) emerged as a promising platform in development of drug delivery agent. This is due to its desirable properties such as tunable pores, large surface area, good biocompatibility and easy functionalization. Furthermore, these properties can be tuned through the utilization of alternative template such as pyridinium ionic liquid. Besides, by employing surface functionalization, the effectiveness of MSNs as drug delivery agent may also increase. This work reported the usage of 1-hexadecylpyridinium bromide ionic liquid as template for MSNs production and the surface of MSNs was then further functionalized via post – grafting method in order to obtain MSN – NH2, MSN – SH and MSN – COOH as drug carrier, respectively. These functionalized MSNs were then used to study the drug loading and drug release of hydrophilic drug, gemcitabine and hydrophobic drug, quercetin. For quercetin, MSN-NH2 had the highest drug loading percentage (72%) and slowest release (14%) in 48 h while for gemcitabine, it was found that MSN-COOH had the highest drug loading percentage (45%) and slowest release (15%) in 48 h. Based on the results, it is suggested that mesoporous silica nanoparticle with surface functionalization has suitable properties for controlled drug release which gives constant release behavior over a period of time to avoid repeated administration of drug where the drug is administered at a fixed dosage and regular time interval.  相似文献   
9.
Research on Chemical Intermediates - The excess emission of greenhouse gases (GHGs) such as CO2 and CH4 is posing an acute threat to the environment, and efficient ways are being sought to utilize...  相似文献   
10.
The flow and heat transfer induced by an exponentially shrinking sheet with hybrid nanoparticles is investigated in this paper. The alumina (Al2O3) and copper (Cu) nanoparticles are suspended in water to form Al2O3–Cu/water hybrid nanofluid. In addition, the effects of magnetohydrodynamic (MHD) and radiation are also taken into account. The similarity equations are gained from the governing equations using similarity transformation, and their solutions are obtained by the aid of the bvp4c solver available in Matlab software. Results elucidate that dual solutions exist for suction strength S > Sc and shrinking strength λ > λc. The critical values Sc and λc for the existence of the dual solutions decrease with the rising of the solid volume fractions of Cu, φ2 and the magnetic parameter, M. Besides, the skin friction and the heat transfer rate increase with the increasing of φ2 and M for the upper branch solutions. The increasing of radiation, R leads to reduce the surface temperature gradient which implies to the reduction of the heat transfer rate for both branches when λ < 0 (shrinking sheet). The stability of the dual solutions is determined by the temporal stability analysis, and it is discovered that only one of them is stable and physically applicable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号