首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   3篇
  国内免费   1篇
化学   1篇
综合类   2篇
数学   10篇
物理学   2篇
  2023年   1篇
  2021年   3篇
  2020年   2篇
  2017年   2篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  1997年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
This paper deals with a predator–prey model with specialist harvesting, representing a two predators (Zooplankton) and one resource (Phytoplankton) system. First, the existence and stability of equilibria is analyzed both from local and global point of view. Our results indicate that a specialist harvesting which is discriminate may mediate the coexistence of the two zooplankton species which competitively exclude each other in absence harvesting. Although in most cases increasing harvesting reduces the two zooplankton species numbers, when harvesting leads to coexistence, it may also lead to increase the two zooplankton species numbers. Furthermore, to protect fish population from over exploitation a control instrument tax is imposed. The problem of optimal taxation policy is then solved by using Pontryagin’s maximal principle. It is established that the zero discounting leads to the maximization of the net economic revenue to the society and an infinite discount rate leads to complete dissipation of the net economic revenue to the society. Finally, the impact of harvesting is mentioned along with numerical results to provide some support to the analytical findings.  相似文献   
2.
象山港电厂附近海域浮游动物群落特征研究   总被引:4,自引:0,他引:4  
2006年9月至2009年4月对象山港电厂海域进行了为期3年每年4季共11个航次的浮游动物调查,共鉴定11大类53种浮游动物,浮游动物丰度平均值为367ind·m-3.数据分析表明,象山港电厂附近海域浮游动物丰度季节变化明显,呈现春季高、秋季低的特征;年际变化总体为逐年增加,但各季变化不同.对样品进行系统聚类分出4个聚类组:第1组由象山港常年习见的近岸低盐种组成,第2组为夏季高温种群,第3组主要为冬季低温种群,第4组为春季种群.通过对指示种值Indicator Values(IV)的分析,将高指示值的突出指示种与环境因子进行相关分析,结果表明:水温是这些指示种的主要相关因子,在所有指示种中与环境因子相关最多的是克氏纺锤水蚤(Acartia clausi Giesbrecht).  相似文献   
3.
We show how the inclusion of the defense strategy by different species can alter the prediction of simple models. One of the defense strategy by the phytoplankton population against their grazer is the release of toxic chemicals. In turn the zooplankton population reduces there predation rate over toxin producing phytoplankton (TPP) to protect themselves from those toxic chemicals. Thus, when the level of toxicity is high, the grazing pressure is low and when the level of toxicity is low or when the toxin is absent, the grazing pressure is high. Here we have considered a TPP–zooplankton system where the rate of toxin liberation and the predation rate vary with zooplankton abundance. We observe that our proposed model has the potential to show different dynamical behaviour that are similar to that seen in real‐world situations. Further, we consider three different functional forms for the distribution of the toxins and compare them using latin hypercube sampling technique and found that the functional forms seem to have no effect in determining the final outcome of the system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
4.
Diel vertical migration is a common movement pattern of zooplankton in marine and freshwater habitats. In this paper, we use a temporally periodic reaction–diffusion–advection system to describe the dynamics of zooplankton and fish in aquatic habitats. Zooplankton live in both the surface water and the deep water, while fish only live in the surface water. Zooplankton undertake diel vertical migration to avoid predation by fish during the day and to consume sufficient food in the surface water during the night. We establish the persistence theory for both species as well as the existence of a time-periodic positive solution to investigate how zooplankton manage to maintain a balance with their predators via vertical migration. Numerical simulations discover the effects of migration strategy, advection rates, domain boundary conditions, as well as spatially varying growth rates, on persistence of the system.  相似文献   
5.
A rapid and simple method for the isolation of fatty acid methyl esters and fatty alcohols from the lipid fraction of marine zooplankton is described. Wax esters are the dominant lipid class in most calanoid copepods and trans-esterification results in a high fatty alcohol content in the analytical extract. Current procedures for the separation and purification of lipid classes by preparative thin-layer chromatography are time-consuming and are subject to low recovery of the analytes. In this method, fatty acid methyl esters and fatty alcohols were separated by liquid chromatography using silica or honded amino-silica as the stationary phase. The procedure is equally applicable to the analysis of zooplankton with low wax ester (and hence fatty alcohol) content, for example, a number of species of euphausiid and, generally, for samples of low mass.  相似文献   
6.
Three‐compartment mathematical models of non‐toxic phytoplankton (NTP), toxin producing phytoplankton (TPP), and zooplankton are proposed to explore the role of TPP in algal blooms. The mutual interference between predator zooplankton and avoidance of TPP by zooplankton are incorporated into the model. The NTP and TPP engage in exploit competition and the toxin produced by TPP has no effect on NTP. Using the concept of uniform persistence, we establish coexistence of NTP, TPP, and zooplankton in certain parameter regimes. We study the effects of mutual interference and avoidance by zooplankton upon the population interactions. In addition to the toxin producing mechanism, it is concluded that mutual interference of zooplankton is an important factor for diminishing harmful blooms. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
7.
Here, we propose a computational approach to explore evolutionary fitness in complex biological systems based on empirical data using artificial neural networks. The essence of our approach is the following. We first introduce a ranking order of inherited elements (behavioral strategies or/and life history traits) in considered self-reproducing systems: we use available empirical information on selective advantages of such elements. Next, we introduce evolutionary fitness, which is formally described as a certain function reflecting the introduced ranking order. Then, we approximate fitness in the space of key parameters using a Taylor expansion. To estimate the coefficients in the Taylor expansion, we utilize artificial neural networks: we construct a surface to separate the domains of superior and interior ranking of pair inherited elements in the space of parameters. Finally, we use the obtained approximation of the fitness surface to find the evolutionarily stable (optimal) strategy which maximizes fitness. As an ecologically important study case, we apply our approach to explore the evolutionarily stable diel vertical migration of zooplankton in marine and freshwater ecosystems. Using machine learning we reconstruct the fitness function of herbivorous zooplankton from empirical data and predict the daily trajectory of a dominant species in the northeastern Black Sea.  相似文献   
8.
9.
10.
Ontogenetic niche shifts in diet are a consequence of changes in body size or resource partitioning between age classes. To better resolve the feeding patterns of the Japanese scallop Mizuhopecten yessoensis, we examined the relative importance of age and size in the diet of this species using stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) from 2006 to 2009. Contribution of food sources was quantified using an isotope mixing model by comparing the muscle tissue isotope ratios to those of suspended particulate organic matter (SPOM) and their zooplankton prey (e.g. micro- and meso-zooplankton). Unlike the δ13C values, which remained constant with age and size, muscle δ15N values were more positively correlated with age accounting for 69?% of variations than size with only 46?%. Increasing 15N values with age suggested that shifts in diet from SPOM to micro- and meso-zooplankton occurred during ontogeny in M. yessoensis. Results of the isotope mixing model indicated that SPOM contribution to scallop’s diet decreased from 68 to 8?% while those of zooplankton increased from 15 to 50?% with increasing age. This study concludes that age-related dietary shift explains the enrichment of 15N, as a result of predation on zooplankton by M. yessoensis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号