首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1736篇
  免费   190篇
  国内免费   123篇
化学   503篇
力学   29篇
综合类   21篇
数学   1140篇
物理学   356篇
  2024年   1篇
  2023年   22篇
  2022年   36篇
  2021年   32篇
  2020年   68篇
  2019年   63篇
  2018年   63篇
  2017年   68篇
  2016年   59篇
  2015年   49篇
  2014年   87篇
  2013年   139篇
  2012年   114篇
  2011年   137篇
  2010年   126篇
  2009年   168篇
  2008年   147篇
  2007年   93篇
  2006年   129篇
  2005年   97篇
  2004年   75篇
  2003年   62篇
  2002年   57篇
  2001年   43篇
  2000年   24篇
  1999年   18篇
  1998年   13篇
  1997年   10篇
  1996年   3篇
  1995年   11篇
  1994年   5篇
  1993年   8篇
  1992年   5篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1985年   4篇
  1984年   1篇
  1975年   1篇
  1969年   1篇
排序方式: 共有2049条查询结果,搜索用时 15 毫秒
1.
Smarandachely邻点可区别全染色是指相邻点的色集合互不包含的邻点可区别全染色,是对邻点可区别全染色条件的进一步加强。本文研究了平面图的Smarandachely邻点可区别全染色,即根据2-连通外平面图的结构特点,利用分析法、数学归纳法,刻画了最大度为5的2-连通外平面图的Smarandachely邻点可区别全色数。证明了:如果$G$是一个$\Delta (G)=5$的2-连通外平面图,则$\chi_{\rm sat}(G)\leqslant 9$。  相似文献   
2.
The properties of strange quark stars are studied within the quasi-particle model. Taking into account chemical equilibrium and charge neutrality, the equation of state(EOS) of(2+ 1)-flavor quark matter is obtained. We illustrate the parameter spaces with constraints from two aspects: one is based on the astronomical results of PSR J0740+ 6620 and GW 170 817,and the other is based on the constraints proposed from the theoretical study of a compact star that the EOS must ensure the tidal deformability Λ_(1.4)=190_(-120)~(+390) and support a maximum mass above 1.97M_⊙. It is found that neither type of constraints can restrict the parameter space of the quasi-particle model in a reliable region and thus we conclude that the low mass compact star cannot be a strange quark star.  相似文献   
3.
Yi-Yan Yang 《中国物理 B》2021,30(6):68703-068703
So far among the nineteen pairs of detected double neutron star (DNS) systems, it is a usual fact that the first-born recycled pulsar is detected, however the youngest DNS system PSR J1906+0746, with the characteristic age of 113 kyr, is one of the three detected DNS as a non-recycled and second-born NS, which is believed to be formed by an electron capture or a low energy ultra-stripped iron core-collapse supernova (SN) explosion. The SN remnant around PSR J1906+0746 is too dim to be observed by optical telescopes, then its x-ray flux limit has been given by Chandra. A reference pulsar PSR J1509-5850 with the young characteristic age of 154 kyr was chosen as an object of comparison, which has an SN remnant observed by Chandra and is believed to be formed by iron core SN explosion. We impose a restriction on the maximum kinetic energy of electron-capture (EC) SN explosion that induces the formation of PSR J1906+0746. The estimated result is (4-8)×1050 erg (1 erg=10-7 J), which is consistent with that of the published simulations of the EC process, i.e., a lower value than that of the conventional iron core SN explosion of (1-2)×1051 erg. As suggested, EC process for NS formation is pertained to the subluminous type Ic SN by the helium star with ONeMg core, thus for the first time we derived the kinetic energy of EC SN explosion of DNS, which may be reconciled with the recent observation of type Ic SN 2014ft with kinetic energy of 2×1050 erg.  相似文献   
4.
The phase state of dense matter in the intermediate density range (\begin{document}$\sim$\end{document}1-10 times the nuclear saturation density) is both intriguing and unclear and can have important observable effects in the present gravitational wave era of neutron stars. As matter density increases in compact stars, the sound velocity is expected to approach the conformal limit (\begin{document}$c_s/c=1/\sqrt{3}$\end{document}) at high densities and should also fulfill the causality limit (\begin{document}$c_s/c<1$\end{document}). However, its detailed behavior remains a prominent topic of debate. It was suggested that the sound velocity of dense matter could be an important indicator of a deconfinement phase transition, where a particular shape might be expected for its density dependence. In this work, we explore the general properties of the sound velocity and the adiabatic index of dense matter in hybrid stars as well as in neutron stars and quark stars. Various conditions are employed for the hadron-quark phase transition with varying interface tension. We find that the expected behavior of the sound velocity can also be achieved by the nonperturbative properties of the quark phase, in addition to a deconfinement phase transition. Moreover, it leads to a more compact star with a similar mass. We then propose a new class of quark star equation of states, which can be tested by future high-precision radius measurements of pulsar-like objects.  相似文献   
5.
The properties of polymeric materials are dictated not only by their composition but also by their molecular architecture. Here, by employing brush‐first ring‐opening metathesis polymerization (ROMP), norbornene‐terminated poly(ethylene oxide) (PEO) macromonomers ( MM‐n , linear architecture), bottlebrush polymers ( Brush‐n , comb architecture), and brush‐arm star polymers ( BASP‐n , star architecture), where n indicates the average degree of polymerization (DP) of PEO, are synthesized. The impact of architecture on the thermal properties and Li+ conductivities for this series of PEO architectures is investigated. Notably, in polymers bearing PEO with the highest degree of polymerization, irrespective of differences in architecture and molecular weight (~100‐fold differences), electrolytes with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as an Li+ source exhibit normalized ionic conductivities (σn) within only 4.9 times difference (σn = 29.8 × 10?5 S cm?1 for MM‐45 and σn = 6.07 × 10?5 S cm?1 for BASP‐45 ) at a concentration of Li+ r = [Li+]/[EO] = 1/12 at 50 °C. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 448–455  相似文献   
6.
A new approach was developed for synthesis of certain A3B3‐type of double hydrophilic or amphiphilic miktoarm star polymers using a combination of “grafting onto” and “grafting from” methods. To achieve the synthesis of desired miktoarm star polymers, acetyl protected poly(ethylene glycol) (PEG) thiols (Mn = 550 and 2000 g mol?1) were utilized to generate A3‐type of homoarm star polymers through an in situ protective group removal and a subsequent thiol–epoxy “click” reaction with a tris‐epoxide core viz. 1,1,1‐tris(4‐hydroxyphenyl)ethane triglycidyl ether. The secondary hydroxyl groups generated adjacent to the core upon the thiol–epoxy reaction were esterified with α‐bromoisobutyryl bromide to install atom transfer radical polymerization (ATRP) initiating sites. ATRP of N‐isopropylacrylamide (NIPAM) using the three‐arm star PEG polymer fitted with ATRP initiating sites adjacent to the core afforded A3B3‐type of double hydrophilic (PEG)3[poly(N‐isopropylacrylamide)] (PNIPAM)3 miktoarm star polymers. Furthermore, the generated hydroxyl groups were directly used as initiator for ring‐opening polymerization of ε‐caprolactone to prepare A3B3‐type of amphiphilic (PEG)3[poly(ε‐caprolactone)]3 miktoarm star polymers. The double hydrophilic (PEG)3(PNIPAM)3 miktoarm star polymers showed lower critical solution temperature around 34 °C. The preliminary transmission electron microscopy analysis indicated formation of self‐assembly of (PEG)3(PNIPAM)3 miktoarm star polymer in aqueous solution. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 146–156  相似文献   
7.
The miktoarm star‐shaped poly(lactic acid) (PLA) copolymer, (PLLA)2‐core‐(PDLA)2, was synthesized via stepwise ring‐opening polymerization of lactide with dibromoneopentyl glycol as the starting material. 1H NMR and FTIR spectroscopy proved the feasibility of synthetic route and the successful preparation of star‐shaped PLA copolymers. The results of FTIR spectroscopy and XRD showed that the stereocomplex structure of the copolymer could be more perfect after solvent dissolution treatment. Effect of chain architectures on crystallization was investigated by studying the nonisothermal and isothermal crystallization of the miktoarm star‐shaped PLA copolymer and other stereocomplexes. Nonisothermal differential scanning calorimetry and polarizing optical microscopy tests indicated that (PLLA)2‐core‐(PDLA)2 exhibited the fastest formation of a stereocomplex in a dynamic test due to its special structure. In isothermal crystallization tests, the copolymer exhibited the fast crystal growth rate and the most perfect crystal morphology. The results reveal that the unique molecular structure has an important influence on the crystallization of the miktoarm star‐shaped PLA copolymer. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 814–826  相似文献   
8.
We demonstrate the directional alignment of perpendicular‐lamellae domains in fluorinated three‐armed star block polymer (BP) thin films using solvent vapor annealing with shear stress. The control of orientation and alignment was accomplished without any substrate surface modification. Additionally, three‐armed star poly(methyl methacrylate‐block‐styrene) [PMMA‐PS] and poly(octafluoropentyl methacrylate‐block‐styrene) were compared to their linear analogues to examine the impact of fluorine content and star architecture on self‐assembled BP feature sizes and interdomain density profiles. X‐ray reflectometry results indicated that the star BP molecular architecture increased the effective polymer segregation strength and could possibly facilitate reduced polymer domain spacings, which are useful in next‐generation nanolithographic applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1663–1672  相似文献   
9.
New hyperbranched hydrophobic cross‐linkers with peripheral azide groups were synthesized as follows: First, star‐shaped polycaprolactones (sPCL) were synthesized by ring‐opening polymerization of caprolactone in the presence of pentaerythritol and tin (II) octoate. In the next step, sequential acrylation, Micheal addition, tosylation, and azidation by acryloyl chloride, diethanol amine, tosyl chloride, and sodium azide were respectively exploited to synthesize azide‐functionalized hyperbranched star‐shaped polycaprolactones which were named sPCL‐acrylate‐diethanolamine‐azide (sPCL‐AC‐DEA‐N3) and sPCL‐acrylate‐diethanolamine‐acrylate‐diethanolamine‐azide (sPCL‐AC‐DEA‐AC‐N3). All steps were thoroughly characterized by FT‐IR and 1H NMR spectroscopy. The GPC analysis showed that the molecular weight of sPCL increased after two azide functionalizations. Amphiphilic hydrogels based on sPCL‐AC‐DEA‐N3 (Mn = 8130 g/mol) and sPCL‐AC‐DEA‐AC‐N3 (Mn = 10112 g/mol) with linear alkyne‐terminated polyethylene glycols (PEG) (Mn = 2000, 4000, and 6000 g/mol) were synthesized through click coupling between azide and alkyne groups. In both hydrogels, the swelling ratio increased by increasing the molecular weight of PEG. The obtained results showed that the branching of the cross‐linker, significantly affected the swelling ratio of hydrogels. For instance, the swelling ratio of sPCL‐AC‐DEA‐AC‐N3 and PEG‐6000 (Q = 900) was higher than sPCL‐AC‐DEA‐N3 and PEG‐6000 (Q = 600). Despite the high cross‐linking density of sPCL‐AC‐DEA‐AC‐DEA‐N3–based hydrogels, the amount of released theophylline was higher than sPCL‐AC‐DEA‐N3–based hydrogels, due to the high content of PEG in these hydrogels.  相似文献   
10.
Novel A2B2‐type energetic miktoarm star‐shaped copolymers composed of two PGN arms and two PCL arms was synthesized by the combination of ring‐opening polymerization (ROP) and “click” chemistry. Initially, diazido end‐functionalized two‐arm PGN, (PGN)2‐(N3)2, was synthesized by ROP of glycidyl nitrate monomers. Subsequently, (PGN)2‐(PCL)2 was obtained from the click reaction between diazido end‐functionalized (PGN)2‐(N3)2 polymers and propargyl‐terminated poly(ε‐caprolactone) (PTPCL). This star copolymer solves problems of PCL (lake of energy) and PGN (low Tg). The Fourier‐transform infrared (FT‐IR), 1H nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) studies revealed that (PGN)2‐(PCL)2 was successfully obtained. The thermal behavior of star polymer was investigated by thermogravimetric analysis (TGA) and derivative thermogravimetry. The results show that (PGN)2‐(PCL)2 decomposed at two stages. The first stage is seen at 212.6°C which related to degradation of –ONO2 group and second stage attributed to degradation of PCL group which is seen at 346.1°C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号