首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25199篇
  免费   5106篇
  国内免费   328篇
化学   7571篇
晶体学   88篇
力学   2204篇
综合类   208篇
数学   9584篇
物理学   10978篇
  2023年   280篇
  2022年   429篇
  2021年   535篇
  2020年   804篇
  2019年   743篇
  2018年   712篇
  2017年   788篇
  2016年   879篇
  2015年   758篇
  2014年   1268篇
  2013年   2095篇
  2012年   1334篇
  2011年   1672篇
  2010年   1301篇
  2009年   1663篇
  2008年   1707篇
  2007年   1820篇
  2006年   1520篇
  2005年   1230篇
  2004年   1016篇
  2003年   1053篇
  2002年   895篇
  2001年   705篇
  2000年   705篇
  1999年   617篇
  1998年   531篇
  1997年   436篇
  1996年   307篇
  1995年   308篇
  1994年   240篇
  1993年   227篇
  1992年   210篇
  1991年   184篇
  1990年   175篇
  1989年   168篇
  1988年   145篇
  1987年   139篇
  1986年   105篇
  1985年   118篇
  1984年   109篇
  1983年   47篇
  1982年   75篇
  1981年   75篇
  1980年   63篇
  1979年   71篇
  1978年   61篇
  1977年   69篇
  1976年   63篇
  1974年   29篇
  1973年   41篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
The three‐dimensional solution conformation of teicoplanin aglycone was determined using NMR spectroscopy. A combination of NOE and dihedral angle restraints in a DMSO solvation model was used to calculate an ensemble of structures having a root mean square deviation of 0.17 Å. The structures were generated using systematic searches of conformational space for optimal satisfaction of distance and dihedral angle restraints. Comparison of the NMR‐derived structure of teicoplanin aglycone with the X‐ray structure of a teicoplanin aglycone analog revealed a common backbone conformation with deviation of two aromatic side chain substituents. Experimentally determined backbone 13C chemical shifts showed good agreement with those computed at the density functional level of theory, providing a cross validation of the backbone conformation. The flexible portion of the molecule was consistent with the region that changes conformation to accommodate protein binding. The results showed that a hydrogen‐bonded DMSO molecule in combination with NMR‐derived restraints together enabled calculation of structures that satisfied experimental data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
3.
Homogeneous xPbO?(1?x) P2O5 glasses where 0 % :σ x<100 % have been successfully synthesized using a melt‐quenching method. The short range structures of the prepared samples were examined by Fourier transform infrared spectroscopy, x‐powder diffraction and scanning electron microscopy. The most stable vitreous phase is of composition 45 mol%PbO‐55 mol%P2O5; it was loaded with zinc volume fraction. We carried out experimental and simulative investigations of the electrical characteristics of p? n junction; the obtained results indicated that conductivity of the composites increases by increasing dopent concentration. It was also observed that the current voltage characteristics of the composite were found to be ohmic in nature, wherein drastic drop of the electrical conduction was observed at an accurate temperature of 405 K. Electrical behavior of the composites as function of filler concentration and versus temperature were explained respectively by percolation theory and positive temperature coefficient effect.  相似文献   
4.
The anharmonic and harmonic rate constants were calculated for the unimolecular decomposition of o‐benzyne, the isomerization of o‐benzyne to m‐benzyne, the isomerization of m‐benzyne to p‐benzyne and unimolecular decomposition of p‐benzyne by using the Rice–Ramsperger–Kassel–Marcus (RRKM) theory respectively, in the canonical and microcanonical systems. The geometry and the vibrational frequencies were calculated by MP2 and B3LYP methods with 6‐311G(d,p) basis set and the barrier energies were corrected using CBS‐QB3 theory. The anharmonic effect on the reactions was also examined. Comparison of results for the decompositions of benzyne indicate that both in microcanonical and canonical cases, the anharmonic effect on the decomposition of the o‐C6H4 and p‐C6H4 are significant, while the anharmonic effect on the two isomerizations are not pronounced.  相似文献   
5.
Density functional theory (DFT) calculations within the framework of generalized gradient approximation have been used to systematically investigate the adsorption of nitric oxide (NO) molecule on neutral, cationic, and anionic Pdn (n = 1–5) clusters. NO coordinate to one Pd atom of the cluster by the end‐on mode, where the tilted end‐on structure is more favorable due to the additional electron in the π* orbital. On the contrary, in the neutral and cationic Pd2 system, NO coordinates to the bridge site of cluster preferably by the side‐on mode. Charge transfer between Pd clusters and NO molecule and the corresponding weakening of N? O bond is an essential factor for the adsorption. The N? O stretching frequency follow the order of cationic > neutral > anionic. Binding energy of NO on anionic clusters is found to be greater than those of neutral and cationic clusters. © 2015 Wiley Periodicals, Inc.  相似文献   
6.
The activity and selectivity of heterogeneous catalysts can be significantly improved by dispersion of another active component in the metal substrate. The impact of Rh promoter on the formation of dimethyl carbonate (DMC) via oxidative carbonylation of methanol on Cu–Rh/AC (activated carbon) catalyst was investigated by density functional theory calculations. The most stable configurations of reacting species (CO, OH, CH3O, monomethyl carbonate, and DMC) adsorbed on the Cu0(zero‐valent copper)/AC and Cu–Rh/AC surfaces were determined on the basis of the calculated results. The reaction energy and activation energy of the rate‐limiting steps on the Cu–Rh/AC and Cu0/AC surfaces were compared. The activation energies of the rate‐limiting step of CO insertion into dimethoxide are 206.3 and 304.8 kJ mol?1 on the Cu–Rh/AC and Cu0/AC surfaces, respectively. The activation energies of the rate‐limiting step of CO insertion into methoxide are 78.5 and 92.7 kJ/mol on the Cu–Rh/AC and Cu0/AC surfaces, respectively. The calculated results indicate that the addition of Rh atom has a significant effect on decreasing the active energy the main pathway for DMC formation. © 2015 Wiley Periodicals, Inc.  相似文献   
7.
The discovery of the covalent‐like character of the hydrogen bonding (H‐bonding) system [Science 342 , 611(2013)] has promoted a renewal of our understanding of the electronic and geometric structures of water clusters. In this work, based on density functional theory calculations, we show that the preferential formation of a stable quasiplanar structure of (H2O)n(n = 3–6) is closely related to three kinds of delocalized molecular orbitals (MOs; denoted as MO‐I, II, and III) of water rings. These originate from the 2p lone pair electrons of oxygen (O), the 2p bond electrons of O and the 1s electrons of H and the 2s electrons of O and 1s electrons of H, respectively. To maximize the orbital overlaps of the three MOs, geometric planarization is needed. The contribution of the orbital interaction is more than 30% in all the water rings according to our energy decomposition analysis, highlighting the considerable covalent‐like characters of H‐bonds. © 2015 Wiley Periodicals, Inc.  相似文献   
8.
A simple and easy‐to‐implement method is presented for the study of time‐dependent reaction dynamics by propagating an ensemble of transmitted quantum trajectories. During the trajectory evolution, reflected trajectories are gradually removed and all the remaining trajectories represent the transmitted subensemble. The removal process of reflected trajectories avoids numerical instabilities arising from node formation in the reactant region, and allows stable long‐time propagation of transmitted trajectories. This method is applied to a two‐dimensional model chemical reaction. Excellent computational results are obtained for the time‐dependent reaction probabilities evaluated by the time integration of the probability flux. © 2014 Wiley Periodicals, Inc.  相似文献   
9.
The source of unoccupied Ti 3d states in the case of stoichiometric anatase structured (TiO2)n clusters has been investigated using ab initio methods. These unoccupied gap states appear for example in the case of a stoichiometric (TiO2)38 cluster. We show that the origin of these gap states is related to effective subcluster formation which gives rise to empty defect‐like gap states, when these states are split off from conduction band. © 2015 Wiley Periodicals, Inc.  相似文献   
10.
Density functional theory (DFT) calculations of nuclear magnetic resonance (NMR) spin–spin coupling constants (SSCCs) provide an important contribution for understanding experimentally observed values. It is known that calculated SSCCs using DFT methods correlate well with those experimentally measured. Unlike most of SSCCs, in fluorine compounds, fluorine–fluorine SSCC JFF shows that the Fermi contact (FC) term is not dominant, particularly for JFF in polyfluorinated organic molecules. In order to devise a DFT approach that would correctly reproduce the variation of SSCCs within a series of fluorine compounds, we test several DFT-based approaches, using different exchange and correlation functionals. Isotropic contributions to NMR fluorine–fluorine coupling constants (FC, spin-dipolar, SD, paramagnetic spin-orbit, PSO, and diamagnetic spin-orbit, DSO) have been calculated. Results show that DFT methods give appropriate values for nJFF (n = 4 to 7), while for geminal and vicinal JFF present large deviations from experimental values. For the latter SSCCs (2JFF and 3JFF), the four contributions (FC, SD, PSO and DSO) are analysed as a function of the local and nonlocal exchange in 1,1- and 1,2-difluoroethylene. Although FC term is not dominant for these SSCCs, the variation of this contribution with exchange is remarkable. On the other hand, SD and PSO contributions can be suitably computed without and with exact exchange, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号